International Journal of Clinical Nutrition & Dietetics Volume 5 (2019), Article ID 5:IJCND-139, 5 pages
https://doi.org/10.15344/2456-8171/2019/139
https://doi.org/10.15344/2456-8171/2019/139
Research Article
Neuroprotection Afforded by a Preventive CogniXtra Treatment Against Amyloid Beta Aβ25-35 Peptide-induced Toxicity in Mice
References
- Alzheimer's Association (2016) 2016 Alzheimer's disease facts and figures. Alzheimers Dement 12: 459-509 [CrossRef] [Google Scholar] [PubMed]
- Doraiswamy PM (2002) Non-cholinergic strategies for treating and preventing Alzheimer's disease. CNS Drugs 16: 811-824 [CrossRef] [Google Scholar] [PubMed]
- Takahata K, Minami A, Kusumoto H, Shimazu S, Yoneda F, et al. (2005) Effects of selegiline alone or with donepezil on memory impairment in rats. Eur J Pharmacol 518: 140-144 [CrossRef] [Google Scholar] [PubMed]
- Butterfield DA (1997) beta-Amyloid-associated free radical oxidative stress and neurotoxicity: implications for Alzheimer's disease. Chem Res Toxicol 10: 495-506 [CrossRef] [Google Scholar] [PubMed]
- Hu N, Yu JT, Tan L, Wang YL, Sun L, et al. (2013) Nutrition and the risk of Alzheimer's disease. Biomed Res Int 2013: 524820 [CrossRef] [Google Scholar] [PubMed]
- Mecocci P, Tinarelli C, Schulz RJ, Polidori MC (2014) Nutraceuticals in cognitive impairment and Alzheimer's disease. Front Pharmacol 5: 147 [CrossRef] [Google Scholar] [PubMed]
- Vakhapova V, Cohen T, Richter Y, Herzog Y, Korczyn AD, et al. (2010) Phosphatidylserine containing omega-3 fatty acids may improve memory abilities in non-demented elderly with memory complaints: a double-blind placebo-controlled trial. Dement Geriatr Cogn Disord 29: 467-474 [CrossRef] [Google Scholar] [PubMed]
- Kato-Kataoka A, Sakai M, Ebina R, Nonaka C, Asano T, et al. (2010) Soybeanderived phosphatidylserine improves memory function of the elderly Japanese subjects with memory complaints. J Clin Biochem Nutr 47: 246- 255 [CrossRef] [Google Scholar] [PubMed]
- Riggs KM, Spiro A, Tucker K, Rush D (1996) Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am J Clin Nutr 63: 306-314 [CrossRef] [Google Scholar] [PubMed]
- Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, et al. (1997) A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer's disease. The Alzheimer's Disease Cooperative Study. N Engl J Med 336: 1216-1222 [CrossRef] [Google Scholar] [PubMed]
- Galasko DR, Peskind E, Clark CM, Quinn JF, Ringman JM, et al. (2012) Antioxidants for Alzheimer disease: a randomized clinical trial with cerebrospinal fluid biomarker measures. Arch Neurol 69: 836-841 [CrossRef] [Google Scholar] [PubMed]
- Maurice T, Lockhart BP, Privat A (1996) Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction. Brain Res 706: 181-193 [CrossRef] [Google Scholar] [PubMed]
- Gruden MA, Davidova TB, Malisauskas M, Sewell RD, Voskresenskaya NI, et al. (2007) Differential neuroimmune markers to the onset of Alzheimer's disease neurodegeneration and dementia: autoantibodies to Abeta (25-35) oligomers, S100b and neurotransmitters. J Neuroimmunol 186: 181-192 [CrossRef] [Google Scholar] [PubMed]
- Pike CJ, Burdick D, Walencewicz AJ, Glabe CG, Cotman CW, et al. (1993) Neurodegeneration induced by beta-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 13: 1676-1687 [Google Scholar] [PubMed]
- Kubo T, Nishimura S, Kumagae Y, Kaneko I (2002) In vivo conversion of racemized beta-amyloid ([D-Ser 26] A beta 1-40) to truncated and toxic fragments ([D-Ser 26]A beta 25-35/40) and fragment presence in the brains of Alzheimer's patients. J Neurosci Res 70: 474-483 [CrossRef] [Google Scholar] [PubMed]
- Haley TJ, McCormick WG (1957) Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother 12: 12-15 [Google Scholar] [PubMed]
- Meunier J, Villard V, Givalois L, Maurice T (2013) The gamma-secretase inhibitor 2-[(1R)-1-[(4-chlorophenyl)sulfonyl](2,5-difluorophenyl)amino] ethyl-5-fluorobenzenebutanoic acid (BMS-299897) alleviates Abeta1-42 seeding and short-term memory deficits in the Abeta25-35 mouse model of Alzheimer's disease. Eur J Pharmacol 698: 193-199 [CrossRef] [Google Scholar] [PubMed]
- Villard V, Espallergues J, Keller E, Vamvakides A, Maurice T, et al. (2011) Antiamnesic and neuroprotective potentials of the mixed muscarinic receptor/ sigma 1 (sigma1) ligand ANAVEX2-73, a novel aminotetrahydrofuran derivative. J Psychopharmacol 25: 1101-1117 [CrossRef] [Google Scholar] [PubMed]
- Hiramatsu M, Inoue K (1999) Nociceptin/orphanin FQ and nocistatin on learning and memory impairment induced by scopolamine in mice. Br J Pharmacol 127: 655-660 [CrossRef] [Google Scholar] [PubMed]
- Hermes-Lima M, Willmore WG, Storey KB (1995) Quantification of lipid peroxidation in tissue extracts based on Fe(III)xylenol orange complex formation. Free Radic Biol Med 19: 271-280 [CrossRef] [Google Scholar] [PubMed]
- Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, et al. (2007) A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35. Neuroscience 145: 209-224 [CrossRef] [Google Scholar] [PubMed]
- Chavant F, Deguil J, Pain S, Ingrand I, Milin S, et al. (2010) Imipramine, in part through tumor necrosis factor alpha inhibition, prevents cognitive decline and beta-amyloid accumulation in a mouse model of Alzheimer's disease. J Pharmacol Exp Ther 332: 505-514 [CrossRef] [Google Scholar] [PubMed]
- Stepanichev MY, Zdobnova IM, Zarubenko, II, Moiseeva YV, Lazareva NA, et al. (2004) Amyloid-beta (25-35)-induced memory impairments correlate with cell loss in rat hippocampus. Physiol Behav 80: 647-655 [CrossRef] [Google Scholar] [PubMed]
- Lahmy V, Long R, Morin D, Villard V, Maurice T, et al. (2014) Mitochondrial protection by the mixed muscarinic/σ1 ligand ANAVEX2-73, a tetrahydrofuran derivative, in Aβ25-35 peptide-injected mice, a nontransgenic Alzheimer’s disease model. Front Cell Neurosci 8: 463 [CrossRef] [Google Scholar] [PubMed]
- Noh MY, Koh SH, Kim SM, Maurice T, Ku SK, et al. (2013) Neuroprotective effects of donepezil against Abeta42-induced neuronal toxicity are mediated through not only enhancing PP2A activity but also regulating GSK-3beta and nAChRs activity. J Neurochem 127: 562-574 [CrossRef] [Google Scholar] [PubMed]
- Stepanichev MY, Zdobnova IM, Zarubenko II, Lazareva NA, Gulyaeva NV, et al. (2006) Studies of the effects of central administration of beta-amyloid peptide (25-35): pathomorphological changes in the Hippocampus and impairment of spatial memory. Neurosci Behav Physiol 36: 101-106 [CrossRef] [Google Scholar] [PubMed]
- Stepanichev M, Lazareva N, Tukhbatova G, Salozhin S, Gulyaeva N, et al. (2014) Transient disturbances in contextual fear memory induced by Abeta(25-35) in rats are accompanied by cholinergic dysfunction. Behav Brain Res 259: 152-157 [CrossRef] [Google Scholar] [PubMed]
- Zussy C, Brureau A, Delair B, Marchal S, Keller E, et al. (2011) Time-course and regional analyses of the physiopathological changes induced after cerebral injection of an amyloid beta fragment in rats. Am J Pathol 179: 315-334 [CrossRef] [Google Scholar] [PubMed]
- Meunier J, Borjini N, Gillis C, Villard V, Maurice T, et al. (2015) Brain toxicity and inflammation induced in vivo in mice by the amyloid-beta forty-two inducer aftin-4, a roscovitine derivative. J Alzheimers Dis 44: 507-524 [CrossRef] [Google Scholar] [PubMed]
- Meunier J, Ieni J, Maurice T (2006) The anti-amnesic and neuroprotective effects of donepezil against amyloid beta25-35 peptide-induced toxicity in mice involve an interaction with the sigma1 receptor. Br J Pharmacol 149: 998-1012 [CrossRef] [Google Scholar] [PubMed]
- Naert G, Ferre V, Meunier J, Keller E, Malmstrom S, et al. (2015) Leucettine L41, a DYRK1A-preferential DYRKs/CLKs inhibitor, prevents memory impairments and neurotoxicity induced by oligomeric Abeta25-35 peptide administration in mice. Eur Neuropsychopharmacol 25: 2170-2182 [CrossRef] [Google Scholar] [PubMed]
- El Bitar F, Meunier J, Villard V, Alméras M, Krishnan K, et al. (2014) Neuroprotection by the synthetic neurosteroid enantiomers ent-PREGS and ent-DHEAS against Aβ25-35 peptide-induced toxicity in vitro and in vivo in mice. Psychopharmacology (Berl) 231: 3293-3312 [CrossRef] [Google Scholar] [PubMed]
- Pertusa M, Garcia-Matas S, Rodriguez-Farre E, Sanfeliu C, Cristofol R, et al. (2007) Astrocytes aged in vitro show a decreased neuroprotective capacity. J Neurochem 101: 794-805 [CrossRef] [Google Scholar] [PubMed]
- Segovia G, Porras A, Del Arco A, Mora F (2001) Glutamatergic neurotransmission in aging: a critical perspective. Mech Ageing Dev 122: 1-29 [CrossRef] [Google Scholar] [PubMed]
- Dyall SC (2015) Long-chain omega-3 fatty acids and the brain: a review of the independent and shared effects of EPA, DPA and DHA. Front Aging Neurosci 7: 52 [CrossRef] [Google Scholar] [PubMed]
- Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15: 195-218 [CrossRef] [Google Scholar] [PubMed]