Profile
International Journal of Clinical Nutrition & Dietetics Volume 4 (2018), Article ID 4:IJCND-131, 11 pages
https://doi.org/10.15344/2456-8171/2018/131
Review Article
Effects of Nutrients, Mainly from Mediterranean Dietary Foods, on Mesenchymal Stem Derived Cells: Growth or Differentiation

Sergio Ammendola1, Rossana Cocchiola2, Mariangela Lopreiato2 and Anna Scotto d’ Abusco2*

1Ambiotec S.A.S. Via Appia Nord 47, 04012 Cisterna di Latina (LT), Italy
2Department of Biochemical Sciences, Sapienza University of Roma, P.le A. Moro 5, 00185 Roma, Italy
Dr. Anna Scotto d’Abusco, Department of Biochemical Sciences, Sapienza University of Roma, P.le A. Moro 5, 00185 Roma, Italy; Tel: +39 06 49910939; Fax +39 05 440062; E-mail: anna.scottodabusco@uniroma1.it
24 March 2018; 25 June 2018; 27 June 2018
Ammendola S, Cocchiola R, Lopreiato M, Scotto d’Abusco A (2018) Nutritional Screening Tools for Hospitalized Children. Int J Clin Nutr Diet 4: 131. doi: https://doi.org/10.15344/2456-8171/2018/131

References

  1. Nombela-Arrieta C, Ritz J, Silberstein LE (2011) The elusive nature and function of mesenchymal stem cells. Nat Rev Mol Cell Biol 12: 126-131 [CrossRef] [Google Scholar] [PubMed]
  2. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, et al. (2005) Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 27: 393-395 [CrossRef] [Google Scholar] [PubMed]
  3. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, et al. (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8: 315-331 [CrossRef] [Google Scholar] [PubMed]
  4. Losson H, Schnekenburger M, Dicato M, Diederich M (2016) Natural Compound Histone Deacetylase Inhibitors (HDACi): Synergy with Inflammatory Signaling Pathway Modulators and Clinical Applications in Cancer. Molecules 21: 608 [CrossRef] [Google Scholar] [PubMed]
  5. Li Q, Xia J, Yao Y, Gong DW, Shi H, et al. (2013) Sulforaphane inhibits mammary adipogenesis by targeting adipose mesenchymal stem cells. Breast Cancer Res Treat 141: 317-324 [CrossRef] [Google Scholar] [PubMed]
  6. Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, et al. (2001) Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet 357: 251-256 [CrossRef] [Google Scholar] [PubMed]
  7. Rozendaal RM, Uitterlinden EJ, van Osch GJ, Garling EH, Willemsen SP, et al. (2009) Effect of glucosamine sulphate on joint space narrowing, pain and function in patients with hip osteoarthritis; subgroup analyses of a randomized controlled trial. Osteoarthritis Cartilage 17: 427-432 [CrossRef] [Google Scholar] [PubMed]
  8. Jackson CG, Plaas AH, Sandy JD, Hua C, Kim-Rolands S, et al. (2010) The human pharmacokinetics of oral ingestion of glucosamine and chondroitin sulfate taken separately or in combination. Osteoarthritis Cartilage 18: 297- 302 [CrossRef] [Google Scholar] [PubMed]
  9. Uitterlinden EJ, Jahr H, Koevoet JL, Jenniskens YM, Bierma-Zeinstra SM, et al. (2006) Glucosamine decreases expression of anabolic and catabolic genes in human osteoarthritic cartilage explants. Osteoarthritis Cartilage 14: 250-257 [CrossRef] [Google Scholar] [PubMed]
  10. Varghese S, Theprungsirikul P, Sahani S, Hwang N, Yarema KJ, et al. (2007) Glucosamine modulates chondrocyte proliferation, matrix synthesis, and gene expression. Osteoarthritis Cartilage 15: 59-68 [CrossRef] [Google Scholar] [PubMed]
  11. Toegel S, Wu SQ, Piana C, Unger FM, Wirth M, et al. (2008) Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1beta-stimulated C-28/I2 chondrocytes. Osteoarthritis Cartilage 16: 1205-1212 [CrossRef] [Google Scholar] [PubMed]
  12. Henrotin Y, Mobasheri A, Marty M (2012) Is there any scientific evidence for the use of glucosamine in the management of human osteoarthritis? Arthritis Res Ther 14: 2012 [CrossRef] [Google Scholar] [PubMed]
  13. Giordano C, Gallina C, Consalvi V, Scandurra R (1991) Synthesis and properties of D-glucosamine N-peptidyl derivatives as substrate analog inhibitors of papain and cathepsin B. Eur J Med Chem 26: 753-762 [CrossRef] [Google Scholar]
  14. Scotto d'Abusco A, Corsi A, Grillo MG, Cicione C, Calamia V, et al. (2008) Effects of intra-articular administration of glucosamine and a peptidylglucosamine derivative in a rabbit model of experimental osteoarthritis: a pilot study. Rheumatol Int 28: 437-443 [CrossRef] [Google Scholar] [PubMed]
  15. Veronesi F, Giavaresi G, Maglio M, Scotto d'Abusco A, Politi L, et al. (2017) Chondroprotective activity of N-acetyl phenylalanine glucosamine derivative on knee joint structure and inflammation in a murine model of osteoarthritis. Osteoarthritis Cartilage. 25: 589-599 [CrossRef] [Google Scholar] [PubMed]
  16. Scotto d'Abusco A, Calamia V, Cicione C, Grigolo B, Politi L, et al. (2007) Glucosamine affects intracellular signalling through inhibition of mitogenactivated protein kinase phosphorylation in human chondrocytes. Arthritis Res Ther 9: 104 [CrossRef] [Google Scholar] [PubMed]
  17. Scotto d'Abusco A, Cicione C, Calamia V, Negri R, Giordano C, et al. (2007) Glucosamine and its N-acetyl-phenylalanine derivative prevent TNFalpha- induced transcriptional activation in human chondrocytes. Clin Exp Rheumatol 25: 847-852 [Google Scholar] [PubMed]
  18. Scotto d’Abusco A, Politi L, Giordano C, Scandurra R (2010) A peptidylglucosamine derivative affects IKKa kinase activity in human chondrocytes. Arthritis Res Ther 12: 18 [CrossRef] [Google Scholar] [PubMed]
  19. Stoppoloni D, Politi L, Leopizzi M, Gaetani S, Guazzo R, et al. (2015) Effect of glucosamine and its peptidyl-derivative on the production of extracellular matrix components by human primary chondrocytes. Osteoarthritis Cartilage 23: 103-113 [CrossRef] [Google Scholar] [PubMed]
  20. Pohlig F, Ulrich J, Lenze U, Mühlhofer HM, Harrasser N, et al. (2016) Glucosamine sulfate suppresses the expression of matrix metalloproteinase-3 in osteosarcoma cells in vitro. BMC Complement Altern Med 16: 313 [CrossRef] [Google Scholar] [PubMed]
  21. Luu HH, Kang Q, Park JK, Si W, Luo Q, et al. (2005) An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis. Clin Exp Metastasis 22: 319-329 [CrossRef] [Google Scholar] [PubMed]
  22. Rodan SB, Imai Y, Thiede MA, Wesolowski G, Thompson D, et al. (1987) Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic properties. Cancer Res 47: 4961-4966 [Google Scholar] [PubMed]
  23. Leopizzi M, Cocchiola R, Milanetti E, Raimondo D, Politi L, et al. (2017) IKKα inibition by a glucosamine derivative enhances maspin expression in osteosarcoma cell line. Chem Biol Inter 262: 19-28 [CrossRef] [Google Scholar] [PubMed]
  24. Kong CS, Kim JA, Eom TK, Kim SK (2010) Phosphorylated glucosamine inhibits adipogenesis in 3T3-L1 adipocytes. J Nutr Biochem 21: 438-443 [CrossRef] [Google Scholar] [PubMed]
  25. Ammendola S, Stoppoloni D, Loreto MD, Scotto d'Abusco A (2016) A Nutraceutical Composition decreases CPK levels in Saos-2 cells and in patients with elevated serum levels of this enzyme. J Am Coll Nutr 35: 559- 567 [CrossRef] [Google Scholar] [PubMed]
  26. Weintraub H, Dwarki VJ, Verma I, Davis R, Hollenberg S, et al. (1991) Muscle-specific transcriptional activation by MyoD. Genes Dev 5: 1377- 1386 [CrossRef] [Google Scholar] [PubMed]
  27. Douglas TEL, Vandrovcová M, Kročilová N, Keppler JK, Zárubová J, et al. (2018) Application of whey protein isolate in bone regeneration: Effects on growth and osteogenic differentiation of bone-forming cells. J Dairy Sci 101: 28-36 [CrossRef] [Google Scholar] [PubMed]
  28. Coker RH, Miller S, Schutzler S, Deutz N, Wolfe RR, et al. (2012) Whey protein and essential amino acids promote the reduction of adipose tissue and increased muscle protein synthesis during caloric restriction-induced weight loss in elderly, obese individuals. Nutr J 11: 105 [CrossRef] [Google Scholar] [PubMed]
  29. Bond P (2016) Regulation of mTORC1 by growth factors, energy status, amino acids and mechanical stimuli at a glance. J Int Soc Sports Nutr 13: 8 [CrossRef] [Google Scholar] [PubMed]
  30. Soayfane Z, Tercé F, Cantiello M, Robenek H, Nauze M, et al. (2016) Exposure to dietary lipid leads to rapid production of cytosolic lipid droplets near the brush border membrane. Nutr Metab (Lond) 13: 48 [CrossRef] [Google Scholar] [PubMed]
  31. Sabour H, Norouzi Javidan A, Latifi S, Hadian MR, Razavi SE, et al. (2014) Is lipid profile associated with bone mineral density and bone formation in subjects with spinal cord injury? J Osteoporos 2014: 695014 [CrossRef] [Google Scholar]
  32. Kim SP, Li Z, Zoch ML, Frey JL, Bowman CE, et al. (2017) Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sexand diet-dependent manner. JCI Insight 2: 92704 [CrossRef] [Google Scholar] [PubMed]
  33. Suryawan A, Orellana RA, Nguyen HV, Jeyapalan AS, Fleming JR et al. (2007) Activation by insulin and amino acids of signaling components leading to translation initiation in skeletal muscle of neonatal pigs is developmentally regulated. Am J Physiol Endocrinol Metab. 293: 1597- 1605 [CrossRef] [Google Scholar] [PubMed]
  34. Redman LM, Rood J, Anton SD, Champagne C, Smith SR, et al. (2008) Calorie restriction and bone health in young, overweight individuals. Arch Intern Med 168: 1859-1866 [CrossRef] [Google Scholar] [PubMed]
  35. Uusi-Rasi K, Sievanen H, Kannus P, Pasanen M, Kukkonen-Harjula K, et al. (2009) Influence of weight reduction on muscle performance and bone mass, structure and metabolism in obese premenopausal women. J Musculoskelet Neuronal Interact 9: 72-80 [Google Scholar] [PubMed]
  36. Upadhyay J, Farr OM, Mantzoros CS (2015) The role of leptin in regulating bone metabolism. Metabolism 64: 105-113 [CrossRef] [Google Scholar] [PubMed]
  37. Xu JC, Wu GH, Zhou LL, Yang XJ, Liu JT, et al. (2016) Leptin improves osteoblast differentiation of human bone marrow stroma stem cells. Eur Rev Med Pharmacol Sci 20: 3507-3513 [Google Scholar] [PubMed]
  38. Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ, et al. (2016) Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow. Cell Stem Cell 18:782-796 [CrossRef] [Google Scholar] [PubMed]
  39. Goldstone AP, Howard JK, Lord GM, Ghatei MA, Gardiner JV, et al. (2002) Leptin prevents the fall in plasma osteocalcin during starvation in male mice. Biochem Biophys Res Commun 295: 475-481 [CrossRef] [Google Scholar] [PubMed]
  40. Conroy R, Girotra M, Shane E, McMahon DJ, Pavlovich KH, et al. (2011) Leptin administration does not prevent the bone mineral metabolism changes induced by weight loss. Metabolism 60: 1222-1226 [CrossRef] [Google Scholar] [PubMed]
  41. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, et al. (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130: 456-469 [CrossRef] [Google Scholar] [PubMed]
  42. van de Peppel J, van Leeuwen JP (2014) Vitamin D and gene networks in human osteoblasts. Front Physiol 5: 137 [CrossRef] [Google Scholar] [PubMed]
  43. Abbas MA (2017) Physiological functions of Vitamin D in adipose tissue. J Steroid Biochem Mol Biol 165: 369-381 [CrossRef] [Google Scholar] [PubMed]
  44. Booth SL (2012) Vitamin K: food composition and dietary intakes. Food Nutr Res [CrossRef] [Google Scholar] [PubMed]
  45. Soeta S, Higuchi M, Yoshimura I, Itoh R, Kimura N, et al. (2010) Effects of vitamin E on the osteoblast differentiation. J Vet Med Sci 72: 951-957 [CrossRef] [Google Scholar] [PubMed]
  46. Alcala M, Calderon-Dominguez M, Serra D, Herrero L, Ramos MP, et al. (2017) Short-term vitamin E treatment impairs reactive oxygen species signaling required for adipose tissue expansion, resulting in fatty liver and insulin resistance in obese mice. PLoS One 12: e0186579 [CrossRef] [Google Scholar] [PubMed]
  47. Lind T, Sundqvist A, Hu L, Pejler G, Andersson G, et al. (2013) Vitamin A is a negative regulator of osteoblast mineralization. PLoS One 8: e82388 [CrossRef] [Google Scholar] [PubMed]
  48. Frey SK, Vogel S (2011) Vitamin A metabolism and adipose tissue biology. Nutrients 3: 27-39 [CrossRef] [Google Scholar] [PubMed]
  49. Moon HJ, Ko WK, Jung MS, Kim JH, Lee WJ, et al. (2013) Coenzyme q10 regulates osteoclast and osteoblast differentiation. J Food Sci 78: 785-891 [CrossRef] [Google Scholar] [PubMed]
  50. Xu Z, Huo J, Ding X, Yang M, Li L, et al. (2017) Coenzyme Q10 Improves Lipid Metabolism and Ameliorates Obesity by Regulating CaMKII-Mediated PDE4 Inhibition. Sci Rep 7: 8253 [CrossRef] [Google Scholar] [PubMed]