Profile
International Journal of Clinical Nutrition & Dietetics Volume 2 (2016), Article ID 2:IJCND-109, 8 pages
https://doi.org/10.15344/2456-8171/2016/109
Review Article
Role of S-adenosylmethionine in the Modulation of Oxidative Stress- Related Neurodegeneration

Rosaria A. Cavallaro1, Andrea Fuso2, Maria d’Erme3, Niccolò Miraglia4, Sara Martire3, Sigfrido Scarpa1 and Luciana Mosca3*

1Department of Surgery “P. Valdoni”, Sapienza University, Roma, Italy
2CERC/S: Lucia Foundation, Roma, Itay
3Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, Roma, Italy;
4Gnosis S.p.A, Desio, MB, Italy
Dr. Luciana Mosca,,Department of Biochemical Sciences, Sapienza University of Roma, Faculty of Pharmacy and Medicine, p.le Aldo Moro, 5 00185 Roma, Italy; E-mail: luciana.mosca@uniroma1.it
17 October 2015; 25 June 2016; 27 June 2016
Cavallaro RA, Fuso A, d’Erme M, Miraglia N, Martire S (2016) Role of S-adenosylmethionine in the Modulation of Oxidative Stress-Related Neurodegeneration. Int J Clin Nutr Diet 2: 109. doi: https://doi.org/10.15344/2456-8171/2016/109

References

  1. Lu SC (2000) S-adenosylmethionine. Int J Biochem Cell Biol 32: 391–395 [CrossRef] [Google Scholar] [PubMed]
  2. Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157: S40-S44 [CrossRef] [Google Scholar] [PubMed]
  3. Finkelstein JD (2007) Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 45: 1694-1699 [CrossRef] [Google Scholar] [PubMed]
  4. Refsum H, Ueland PM, Nygard O, Vollset SE (1998) Homocysteine and cardiovascular disease. Ann Rev Med 49: 31-62 [CrossRef] [Google Scholar] [PubMed]
  5. Glier MB, Green TJ, Devlin AM (2014) Methyl nutrients, DNA methylation, and cardiovascular disease. Mol Nutr Food Res 58: 172-82 [CrossRef] [Google Scholar] [PubMed]
  6. Finkelstein J (2003) Methionine metabolism in liver disease. Am J Clin Nutr 77: 1094-1095 [CrossRef] [Google Scholar]
  7. Lu SC and Mato JM (2012) S-adenosylmethionine in liver health, injury, and cancer. Physiol Rev 92: 1515-1542 [CrossRef] [Google Scholar] [PubMed]
  8. Jung YS (2015) Metabolism of Sulfur-Containing Amino Acids in the Liver: A Link between Hepatic Injury and Recovery. Biol Pharm Bull 38: 971-974 [CrossRef] [Google Scholar] [PubMed]
  9. Anstee QM, Day CP (2012) S-adenosylmethionine (SAMe) therapy in liver disease: a review of current evidence and clinical utility. J Hepatol 57: 1097- 1109 [CrossRef] [Google Scholar] [PubMed]
  10. Osterhues A, Ali NS, Michels KB (2013) The role of folic acid fortification in neural tube defects: a review. Crit Rev Food Sci Nutr 53: 1180-1190 [CrossRef] [Google Scholar] [PubMed]
  11. Migliore L, Coppede` F (2009) Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases. Mutat Res 667: 82-97 [CrossRef] [Google Scholar] [PubMed]
  12. Coppedè F, Bosco P, Fuso A, Troen AM (2012) Nutrition and dementia. Curr Gerontol Geriatr Res 2012: 926082 [CrossRef] [PubMed]
  13. Fuso A, Scarpa S (2011) One-carbon metabolism and Alzheimer's disease: is it all a methylation matter? Neurobiol Aging 32: 1192-1195 [CrossRef] [Google Scholar] [PubMed]
  14. Mastroeni D, Grover A, Delvaux E, Whiteside C, Coleman PD, et al.(2011) Epigenetic mechanisms in Alzheimer's disease. Neurobiol Aging 32: 1161- 1180 [CrossRef] [Google Scholar]
  15. Fleming JL, Phiel CJ, Toland AE (2012) The role for oxidative stress in aberrant DNA methylation in Alzheimer's disease. Curr Alzheimer Res 9: 1077-1096 [CrossRef] [Google Scholar] [PubMed]
  16. Sezgin Z, Dincer Y (2014) Alzheimer's disease and epigenetic diet. Neurochem Int 78: 105-116 [CrossRef] [Google Scholar] [PubMed]
  17. Nunomura A, Castellani R, Zhu X, Moreira PI, Perry G, Smith MA (2006) Involvement of oxidative stress in Alzheimer disease. J Neuropathol Exp Neurol, 65: 631-641 [CrossRef] [Google Scholar] [PubMed]
  18. Lovell MA, Markesbery WR (2007) Oxidative damage in mild cognitive impairment and early Alzheimer’s disease. J Neurosci Res 85: 3036-3040 [CrossRef] [Google Scholar] [PubMed]
  19. Casado A, Encarnacion Lopez-Fernandez M, Concepcion Casado M, De La Torre R (2008) Lipid peroxidation and antioxidant enzyme activities in vascular and Alzheimer dementias. Neurochemical Research 33: 450-458 [CrossRef] [Google Scholar] [PubMed]
  20. Iqbal K, Grundke-Iqbal I (2010) Alzheimer's disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement 6: 420-424 [CrossRef] [Google Scholar] [PubMed]
  21. Ansari MA ,Scheff SW (2010) Oxidative stress in the progression of Alzheimer disease in the frontal cortex . J Neuropathol Exp Neurol 69: 155- 167 [CrossRef] [Google Scholar] [PubMed]
  22. Sultana R, Butterfield DA (2010) Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimers Dis19: 341-353 [CrossRef] [Google Scholar] [PubMed]
  23. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, et al. (2011) Alzheimer's disease. Lancet 377: 1019-1031 [CrossRef] [PubMed]
  24. Johnson WM, Wilson-Delfosse A L,. Mieyal J J (2012) Dysregulation of Glutathione Homeostasis in Neurodegenerative Diseases. Nutrients 4: 1399-1440 [CrossRef] [Google Scholar] [PubMed]
  25. Bottiglieri T, Hyland K (1994) S-adenosylmethionine levels in psychiatric and neurological disorders: a review. Acta Neurol Scand Suppl 154: 19-26 [CrossRef] [Google Scholar] [PubMed]
  26. Morrison LD, Smith DD, Kish SJ (1996) Brain S-adenosylmethionine levels are severely decreased in Alzheimer’s disease. J Neurochem. 67: 1328– 1331 [CrossRef] [Google Scholar] [PubMed]
  27. Tchantchou F, Graves M, Ortiz D, Chan A, Rogers E, et al. (2006) S-adenosyl methionine: A connection between nutritional and genetic risk factors for neurodegeneration in Alzheimer’s disease. J Nutr Health Aging 10: 541-544 [Google Scholar] [PubMed]
  28. Shea TB, Chan A, (2008) S-adenosyl methionine: a natural therapeutic agent effective against multiple hallmarks and risk factors associated with Alzheimer's disease. J Alzheimers Dis. 2008 13: 67-70 [Google Scholar] [PubMed]
  29. Fuso A, Nicolia V, Ricceri L, Cavallaro RA, Isopi E, et al. (2012) S-adenosylmethionine reduces the progress of the Alzheimer-like features induced by B-vitamin deficiency in mice. Neurobiol Aging 1482: e1-e16 [CrossRef] [Google Scholar] [PubMed]
  30. Niedzwiecki MM, Hall MN, Liu X, Oka J, Harper KN, et al. (2013) Blood glutathione redox status and global methylation of peripheral blood mononuclear cell DNA in Bangladeshi adults. Epigenetics 8: 730-738 [CrossRef] [Google Scholar] [PubMed]
  31. Cannon LM, Butler FN, WanW, Zhou ZS (2002) A stereospecific colorimetric assay for (S,S)-adenosylmethionine quantification based on thiopurine methyltransferase-catalyzed thiol methylation. Anal Biochem 308: 358-363 [CrossRef] [Google Scholar] [PubMed]
  32. Bentley R (2005) Role of sulfur chirality in the chemical processes of biology. Chem Soc Rev 34: 609–624 [CrossRef] [Google Scholar] [PubMed]
  33. Hoffman JL (1986) Chromatographic analysis of the chiral and covalent instability of S-adenosyl-L-methionine. Biochemistry 25: 4444–4449 [CrossRef] [Google Scholar]
  34. Beaudouin C, Haurat G, Laffitte JA, Renaud B (1993) The presence of (+)-S-adenosyl-L-methionine in the rat brain and its lack of effect on phenylethanolamine N-methyltransferase activity. J Neurochem 61: 928- 935 [CrossRef] [Google Scholar]
  35. Wu SE, Huskey WP, Borchardt R, Schowen RL (1983) Chiral instability at sulfur of S-adenosylmethionine. Biochemistry 22: 2828-2832 [CrossRef] [Google Scholar]
  36. Matos JR, Wong CH (1987) S-adenosylmethionine: Stability and stabilization. Bioorg Chem 15: 71-80 [CrossRef] [Google Scholar]
  37. Revell LK, d’Avogno DA, Reepmeyer JC, Zerfing RC (1995) Stabilityindicating proton nuclear magnetic resonance spectroscopic method for determination of S-adenosyl-L-methionine in tablets. J AOAC Int 78: 353–358 [Google Scholar] [PubMed]
  38. Desiderio C, Cavallaro RA, De Rossi A, D'Anselmi F, Fuso A, et al. (2005) Evaluation of chemical and diastereoisomeric stability of S-adenosylmethionine in aqueous solution by capillary electrophoresis. J Pharm Biomed Anal 38: 449-456 [CrossRef] [Google Scholar] [PubMed]
  39. Fiecchi A, Double salts of S-adenosylmethionine, US Patent 3,954,726 (4 May 1976)
  40. Morana A, Stiuso P, Colonna G, Lamberti M, Cartenì M, et al. (2002) Stabilization of S-adenosyl-L-methionine promoted by trehalose. Biochim Biophys Acta 1573: 105-8 [CrossRef] [Google Scholar] [PubMed]
  41. Thomsen M, Vogensen SB, Buchardt J, Burkart MD, Clausen RP (2013) Chemoenzymatic synthesis and in situ application of S-adenosyl-Lmethionine analogs. Org Biomol Chem 11: 7606-7610 [CrossRef] [Google Scholar] [PubMed]
  42. Garrow TA (1996) Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J Biol Chem. 271: 22831-22838 [CrossRef] [Google Scholar] [PubMed]
  43. McBean GJ (2012) The transsulfuration pathway: A source of cysteine for glutathione in astrocytes. Amino Acids 42: 199-205 [CrossRef] [Google Scholar] [PubMed]
  44. Vitvitsky V, Thomas M, Ghorpade A, Gendelman HE, Banerjee R (2006) A functional transsulfuration pathway in the brain links to glutathione homeostasis. J Biol Chem 281: 35785-35793 [CrossRef] [Google Scholar] [PubMed]
  45. Mato JM, Corrales FJ, Lu SC, Avila MA (2002) S-Adenosylmethionine: a control switch that regulates liver function. 16: 15-26 [CrossRef] [Google Scholar] [PubMed]
  46. Scarpa S, Cavallaro RA, D’Anselmi F, Fuso A (2006) Gene silencing through methylation: an epigenetic intervention on Alzheimer disease. J Alzheimer Dis 9: 407-414 [Google Scholar] [PubMed]
  47. Fuso A, NicoliaV, Cavallaro RA, Ricceri L, D'Anselmi F, et al. (2008) B-vitamin deprivation induces hyperhomocysteinemia and brain S-adenosylhomocysteine, depletes brain S-adenosylmethionine, and enhances PS1 and BACE expression and amyloid-beta deposition in mice. Mol Cell Neurosci 37: 731-746 [CrossRef] [Google Scholar] [PubMed]
  48. McCaddon A, Hudson P, Hill D, Barber J, Lloyd A, et al. (2003) Alzheimer’s disease and total plasma aminothiols. Biol Psychiatry 53: 254-260 [CrossRef] [Google Scholar] [PubMed]
  49. Ulrey CL, Liu L, Andrews LG, Tollefsbol TO (2005) The impact of metabolism on DNA methylation. Mol Genet 14: 139-147 [CrossRef] [Google Scholar] [PubMed]
  50. Xiao Y, Su X, Huang W, Zhang J, Peng C, et al. (2015) Role of S-adenosylhomocysteine in cardiovascular disease and its potential epigenetic mechanism. Int J Biochem Cell Biol 67: 158-166 [CrossRef] [Google Scholar] [PubMed]
  51. Muratore CR, Hodgson NW, Trivedi MS, Abdolmaleky HM, Persico AM, et al. (2013) Age-dependent decrease and alternative splicing of methionine synthase mRNA in human cerebral cortex and an accelerated decrease in autism. PLoS One 8: e56927 [CrossRef] [Google Scholar] [PubMed]
  52. Trivedi MS, Deth R (2015) Redox-based epigenetic status in drug addiction: a potential contributor to gene priming and a mechanistic rationale for metabolic intervention. Front Neurosci 8: 444 [CrossRef] [Google Scholar] [PubMed]
  53. Bottiglieri T, Godfrey P, Flynn T, Carney MWP, Toone BK, et al. (1990) Cerebrospinal fluid S-adenosylmethionine in depression and dementia: the effect of parenteral and oral treatment. J Neurol Neurosurg Psychiatr 53: 1096-1098 [CrossRef] [Google Scholar] [PubMed]
  54. Castagna A, Le Grazie C, Giulidori P, Bottiglieri T, Lazzarin A (1995) Cerebrospinal fluid S-adenosylmethionine (SAMe) and glutathione concentrations in HIV infection: effect of parenteral treatment with SAMe. Neurology 45: 1678-1683 [CrossRef] [Google Scholar] [PubMed]
  55. Chishty M, Reichel A, Abbott NJ, Begley DJ (2002) S-adenosylmethionine is substrate for carrier mediated transport at the blood–brain barrier in vitro. Brain Research 942: 46-50 [CrossRef] [Google Scholar] [PubMed]
  56. Mischoulon D, Fava M (2002) Role of S-adenosyl-L-methionine in the treatment of depression: a review of the evidence. Am J Clin Nutr 76: 1158S-61S [CrossRef] [Google Scholar] [PubMed]
  57. Spillmann M, Fava M (1996) S-adenosyl-methionine (ademethionine) in psychiatric disorders. CNS Drugs 6: 416-425 [Google Scholar]
  58. Mc Millan JM, Walle UK, Walle T (2005) S-adenosyl-L-methionine: transcellular transport and uptake by Caco-2 cells and hepatocytes. J Pharm Pharmacol 57: 599–605 [CrossRef] [Google Scholar] [PubMed]
  59. Bottiglieri T (1990) Isocratic high performance liquid chromatographic analysis of S-adenosylmethionine and S-adenosylhomocysteine in animal tissues: the effect of exposure to nitrous oxide. Biomed Chromatogr 4: 239- 241 [CrossRef] [Google Scholar] [PubMed]
  60. Bell KM, Potkin SG, Carreon D, Plon L (1994) S-adenosylmethionine blood levels in major depression: changes with drug treatment. Acta Neurol Scand Suppl 154: 15-18 [Google Scholar] [PubMed]
  61. Bottiglieri T (2002) S-Adenosyl-L-methionine (SAMe): from the bench to the bedside--molecular basis of a pleiotrophic molecule. Am J Clin Nutr 76: 1151S-1157S [CrossRef] [Google Scholar] [PubMed]
  62. Fazio C, Andreoli V, Agnoli A, Casacchia M, Cerbo R (1973) Therapeutic effects and mechanism of action of S-adenosyl-L-methionine (SAM) in depressive syndromes. Minerva Med 64: 1515-1529 [Google Scholar] [PubMed]
  63. Bressa GM (1994) S-adenosyl-L-methionine (SAMe) as antidepressant: meta-analysis of clinical studies. Acta Neurol Scand Suppl 154: 7-14 [CrossRef] [Google Scholar] [PubMed]
  64. Papakostas GI, Alpert JE, Fava M (2003) S-adenosyl-methionine in depression: a comprehensive review of the literature. Curr Psychiatry Rep 5: 460-466 [Google Scholar] [PubMed]
  65. Williams AL, Girard C, Jui D, Sabina A, Katz D L (2005) S-adenosylmethionine (SAMe) as treatment for depression: a systematic review. Clin Invest Med 28: 132-139 [Google Scholar] [PubMed]
  66. Almasio P, Bortolini M, Pagliaro L, Coltorti M (1990) Role of S-adenosyl-Lmethionine in the treatment of intrahepatic cholestasis. Drugs 40 : 111-123 [CrossRef] [Google Scholar] [PubMed]
  67. Frezza M, Centini G, Cammareri G, Le Grazie C, Di Padova C (1990) S-adenosylmethionine for the treatment of intrahepatic cholestasis of pregnancy. Results of a controlled clinical trial. Hepatogastroenterology 37: 122-125 [Google Scholar] [PubMed]
  68. Frezza M, Surrenti C, Manzillo G, Fiaccadori F, Bortolini M, Di Padova C (1990) Oral S-adenosylmethionine in the symptomatic treatment of intrahepatic cholestasis. A double-blind, placebo-controlled study. Gastroenterology 99: 211-215 [CrossRef] [Google Scholar] [PubMed]
  69. Chawla RK, Bonkovsky H, Galambos JT (1990) Biochemistry and pharmacology of S-adenosyl-L-methionine and rationale for its use in liver disease. Drugs 40 Suppl 3: 98-110 [CrossRef] [Google Scholar] [PubMed]
  70. Zeisel S (2009) Importance of methyl donors during reproduction. Am J Clin Nutr 89: 673S-677S [CrossRef] [Google Scholar] [PubMed]
  71. Grant WB, Campbell A, Itzhaki RF, Savory J (2002) The significance of environmental factors in the etiology of Alzheimer’s disease. J Alzheimers Dis 4: 179-189 [Google Scholar] [PubMed]
  72. Dosunmu R, Wu J, Basha MR, Zawia NH (2007) Environmental and dietary risk factors in Alzheimer’s disease. Expert Rev Neurother 7: 887-900 [CrossRef] [Google Scholar] [PubMed]
  73. Liu L, Li Y, Tollefsbol TO (2008) Gene-environment interactions and epigenetic basis of human diseases. Curr Issues Mol Biol 10: 25-36 [Google Scholar] [PubMed]
  74. Lahiri DK, Maloney B, Basha MR, Ge YW, Zawia NH (2007) How and when environmental agents and dietary factors affect the course of Alzheimer’s disease: the “LEARn” model (latent early-life associatedregulation) may explain the triggering of AD. Curr Alzheimer Res 4: 219-228 [CrossRef] [Google Scholar] [PubMed]
  75. Wu J, Basha MR, Zawia NH, (2008) The environment, epigenetics and amyloidogenesis. J Mol Neurosci 34: 1-7 [CrossRef] [Google Scholar] [PubMed]
  76. Takumi S, Okamura K, Yanagisawa H, Sano T, Kobayashi Y, et al. (2015) The effect of a methyl-deficient diet on the global DNA methylation and the DNA methylation regulatory pathways. J Appl Toxicol 1550-1556 [CrossRef] [Google Scholar] [PubMed]
  77. Aoyama K, Watabe M, Nakaki T (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci 108: 227-238 [CrossRef] [Google Scholar] [PubMed]
  78. Mariani E, Polidori MC, Cherubini A, Mecocci P (2005) Oxidative stress in brain aging, neurodegenerative and vascular disease: An overview. J Chromatogr B 827: 65-75 [CrossRef] [Google Scholar] [PubMed]
  79. Halliwell B (2012) Free radicals and antioxidants: updating a personal view. Nutr Rev 70: 257-265 [CrossRef] [Google Scholar] [PubMed]
  80. Meraz-Ríos MA, Franco-Bocanegra D, Toral Rios D, Campos-Peña V (2014) Early Onset Alzheimer’s Disease and Oxidative Stress. Oxid Med Cell Longev 2014: 375968 [CrossRef] [Google Scholar]
  81. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23: 134-147 [CrossRef] [Google Scholar] [PubMed]
  82. Sultana R, Butterfield DA (2010) Role of oxidative stress in the progression of Alzheimer’s disease. J Alzheimers Dis 19: 341-353 [CrossRef] [Google Scholar] [PubMed]
  83. Chang YT, Chang WN, Tsai NW, Huang CC, Kung CT, et al. (2014) The Roles of Biomarkers of Oxidative Stress and Antioxidant in Alzheimer’s Disease: A Systematic Review. BioMed Research Int 2014: 182303 [CrossRef] [Google Scholar] [PubMed]
  84. Cristalli DO, Arnal N, Marra FA, De Alaniz MJT, Marra CA (2012) Peripheral markers in neurodegenerative patients and their first-degree relatives. J Neurol Sci 314: 48-56 [CrossRef] [Google Scholar] [PubMed]
  85. Guidi I, Galimberti D, Lonati S, Novembrino C, et al. (2006) Oxidative imbalance in patients with mild cognitive impairment and Alzheimer’s disease. Neurobiology Aging 27: 262-269 [CrossRef] [Google Scholar] [PubMed]
  86. Butterfield DA, Swomley AM, Sultana R (2013) Amyloid beta-peptide (1-42)-induced oxidative stress in Alzheimer disease: Importance in disease pathogenesis and progression. Antioxid Redox Signal 19: 823-835 [CrossRef] [Google Scholar] [PubMed]
  87. Martire S, Fuso A, Rotili D, Tempera I, Giordano C, et al. (2013) PARP-1 modulates amyloid beta peptide-induced neuronal damage. PLoS One 8: e72169 [CrossRef] [Google Scholar] [PubMed]
  88. Larson ME, Lesnè SE (2012) Soluble Aβ oligomer production and toxicity. J Neurochem 120 suppl: 1125-1139 [CrossRef] [Google Scholar] [PubMed]
  89. Saharana S, Mandal PK (2014) The Emerging Role of Glutathione in Alzheimer’s Disease. J Alzheimer Disease 40: 519-529 [CrossRef] [Google Scholar] [PubMed]
  90. Darvesh AS, Carroll RT, Bishayee A, Geldenhuys WJ,Van der Schyf C (2010) Oxidative stress and Alzheimer's disease: dietary polyphenols as potential therapeutic agents. Expert Rev Neurother 10: 729-745 [CrossRef] [Google Scholar] [PubMed]
  91. Mato JM, Lu SC (2007) Role of S-adenosyl-L-methionine in liver health and injury. Hepatology 45: 1306-1312 [CrossRef] [Google Scholar] [PubMed]
  92. Purohit V, Abdelmalek MF, Barve S, Benevenga NJ, Halsted CH, et al. (2007) Role of S-adenosylmethionine, folate, and betaine in the treatment ofalcoholic liver disease: summary of a symposium. Am J Clin Nutr 8: 14- 24 [CrossRef] [Google Scholar] [PubMed]
  93. Caro AA, Cederbaum AI (2004) Antioxidant properties of S-adenosyl-Lmethionine in Fe(2+)-initiated oxidations. Free Radic Biol Med 36: 1303- 1316 [CrossRef] [Google Scholar] [PubMed]
  94. Brown JM, Kuhlman C, Terneus MV, Labenski MT, Lamyaithong AB, et al. (2014) S-adenosyl-l-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry. Toxicol Appl Pharmacol. 281: 174-184 [CrossRef] [Google Scholar] [PubMed]
  95. Fuso A, Nicolia V, Pasqualato A, Fiorenza MT, Cavallaro RA, et al. (2011) Changes in Presenilin 1 gene methylation pattern in diet-induced B vitamin deficiency. Neurobiol Aging 32: 187-99 [CrossRef] [Google Scholar] [PubMed]
  96. Fuso A, Nicolia V, Cavallaro RA, Scarpa S (2011) DNA methylase and demethylase activities are modulated by one-carbon metabolism in Alzheimer's disease models. J Nutr Biochem 22: 242-251 [CrossRef] [Google Scholar] [PubMed]
  97. Nicolia V, Fuso A, Cavallaro RA, Di Luzio A, Scarpa S, (2010) B vitamin deficiency promotes tau phosphorylation through regulation of GSK3_ and PP2A. J Alzheimers Dis 19: 895-907 [CrossRef] [Google Scholar] [PubMed]
  98. Sontag E, Nunbhakdi-Craig V, Sontag JM, Diaz-Arrastia R, Ogris E, et al. (2007) Protein phosphatase 2A methyltransferase links homocysteine metabolism with tau and amyloid precursor protein regulation. J Neurosci 27: 2751-2759 [CrossRef] [Google Scholar] [PubMed]
  99. Villalobos M A, De La Cruz JP, Cuerda MA, Ortiz P, Smith-Agreda JM, Sanchez De La Cuesta F (2000) Effect of S-adenosyl-L-methionine on rat brain oxidative stress damage in a combined model of permanent focal ischemia and global ischemia-reperfusion. Brain Res. 883: 31- 40 [CrossRef] [Google Scholar] [PubMed]
  100. Villalobos MA, Cuerda MA, Guerrero A, González-Correa JA, Sánchez De La Cuesta F (2002) Effects of S-adenosyl-L-methionine on lipid peroxidation and glutathione levels in rat brain slices exposed to reoxygenation after oxygen-glucose deprivation. Neurosci Lett. 318: 103-107 [CrossRef] [Google Scholar] [PubMed]
  101. Tchantchou F, Graves M, Falcone T, Shea TB (2008) S-adenosylmethionine mediated glutathione efficacy by increasing glutathione- S transferase activity: implication for S-adensoylmethionine as neuroprotective dietary supplement. J Alzheimers Dis 14:323-328 [Google Scholar] [PubMed]
  102. Chan A, Remington R, Kotyla E, Lepore A, Zemianek J, Shea TB (2010) A vitamin/nutriceutical formulation improves memory and cognitive performance in community-dwelling adults without dementia. J Nutr Health Aging. 14: 224-230 [Google Scholar] [PubMed]
  103. Chan A, Paskavitz J, Remington R, Rasmussen S, Shea TB (2008) Efficacy of a vitamin/nutriceutical formulation for early stage Alzheimer Disease: a 1 year open label pilot study with an 16 months care- giver extension. Am J Alzheimers Dis. Other Demen 23: 571-585 [CrossRef] [Google Scholar] [PubMed]
  104. Cavallaro RA, Fuso A, Nicolia V, Scarpa S (2010) S-adenosylmethionine prevents oxidative stress and modulates glutathione metabolism in TgCRND8 mice fed a B-vitamin deficient diet. J Alzheimers Dis 20: 997- 1002 [CrossRef] [Google Scholar] [PubMed]
  105. Fuso A, Cavallaro RA, Nicolia V, Fiorenza M., Scarpa S (2011) S-adenosylmethionine and Superoxide-dismutase are effective in amyloidosis reduction in TgCRND8 mice. In: Alzheimer’s Association International Conference on Alzheimer’s Disease. Paris, France, July 16- 21, 2011 [CrossRef] [Google Scholar]
  106. Persichilli S, Gervasoni J, Di Napoli A, Fuso A, Nicolia V, et al. (2015) Plasma thiols levels in Alzheimer's disease mice under diet-induced hyperhomocysteinemia: effect of S-adenosylmethionine and superoxidedismutase supplementation. J Alzheimers Dis 44: 1323-1331 [CrossRef] [Google Scholar] [PubMed]