Profile
International Journal of Metallurgical & Materials Engineering Volume 3 (2017), Article ID 3:IJMME-134, 5 pages
http://dx.doi.org/10.15344/2455-2372/2017/134
Research Article
Special Issue: Bioceramics: Designing, Applications and Challenges
Electrospun Poly(γ-glutamate)/Silica Hybrids for Tissue Regeneration: Influences of Silane Coupling Agents on Chemistry, Degradation and Florescent Dye Release

Akiko Obata1*, Makoto Shimada1, Makito Iguchi1, Norihiko Iwanaga1, Toshihisa Mizuno2 and Toshihiro Kasuga1

1Division of Advanced Ceramics, Nagoya Institute of Technology, Gokisocho, Showa Ward, Nagoya, Aichi Prefecture 466-8555, Japan
2Division of Life and Materials Chemistry, Nagoya Institute of Technology, Gokisocho, Showa Ward, Nagoya, Aichi Prefecture 466-8555, Japan
Dr. Akiko Obata, Nagoya Institute of Technology, Gokisocho, Showa Ward, Nagoya, Aichi Prefecture 466-8555, Japan, Tel: +81(0)427355400; E-mail: obata.akiko@nitech.ac.jp
29 March 2017; 17 May 2017; 19 May 2017
Obata A, Shimada M, Iguchi M, Iwanaga N, Mizuno T, et al. (2017) Electrospun Poly(γ-glutamate)/Silica Hybrids for Tissue Regeneration: Influences of Silane Coupling Agents on Chemistry, Degradation and Florescent Dye Release. Int J Metall Mater Eng 3: 134. doi: https://doi.org/10.15344/2455-2372/2017/134
This work was supported in part by the JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers.

References

  1. Jose MV, Thomas V, Johnson KT, Dean DR, Nyairo E (2009) Aligned PLGA/ HA nanofibrous nanocomposite scaffolds for bone tissue engineering. Acta Biomater 5: 305-315. View
  2. Aviss KJ, Gough JE, Downes S (2010) Aligned electrospun polymer fibres for skeletal muscle regeneration. Eur Cell Mater 19: 193-204. View
  3. Schneider OD, Loher S, Brunner TJ, Uebersax L, Simonet M et al. (2008) Cotton wool-like nanocomposite biomaterials prepared by electrospinning: In vitro bioactivity and osteogenic differentiation of human mesenchymal stem cells. J Biomed Mater Res Part B 84B: 350-362. View
  4. Yokoyama Y, Hattori S, Yoshikawa C, Yasuda Y, Koyama H et al. (2009) Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater Lett 63: 754-756. View
  5. Obata A, Ozasa H, Kasuga T, Jones J (2013) Cotton wool-like poly(lactic acid)/vaterite composite scaffolds releasing soluble silica for bone tissue engineering. J Mater Sci-Mater Med 24: 1649-1658. View
  6. Kasuga T, Obata A, Maeda H, Ota Y, Yao X, et al. (2012) Siloxanepoly( lactic acid)-vaterite composites with 3D cotton-like structure. J Mater Sci-Mater Med 23: 2349-2357. View
  7. Sill TJ, von Recum HA (2008) Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 29: 1989-2006. View
  8. Obata A, Ito S, Iwanaga N, Mizuno T, Jones JR, et al. (2014) Poly([gamma]- glutamic acid)-silica hybrids with fibrous structure: effect of cation and silica concentration on molecular structure, degradation rate and tensile properties. RSC Adv 4: 52491-52499. View
  9. Koeda S, Ichiki K, Iwanaga N, Mizuno K, Shibata M, et al. (2016) Construction and Characterization of Protein-Encapsulated Electrospun Fibermats Prepared from a Silica/Poly(γ-glutamate) Hybrid. Langmuir 32: 221-229. View
  10. Gao C, Ito S, Obata A, Mizuno T, Jones JR, et al. (2016) Fabrication and in vitro characterization of electrospun poly (γ-glutamic acid)-silica hybrid scaffolds for bone regeneration. Polymer 91: 106-117. View
  11. Valliant EM, Romer F, Wang D, McPhail DS, Smith ME, et al. (2013) Bioactivity in silica/poly(γ-glutamic acid) sol–gel hybrids through calcium chelation. Acta Biomater 9: 7662-7671. View
  12. Poologasundarampillai G, Ionescu C, Tsigkou O, Murugesan M, Hill RG, et al. (2010) Synthesis of bioactive class II poly(γ-glutamic acid)/silica hybrids for bone regeneration. J Mater Chem 20: 8952-8961. View
  13. Poologasundarampillai G, Yu B, Tsigkou O, Valliant E, Yue S, et al. (2012) Bioactive silica-poly(γ-glutamic acid) hybrids for bone regeneration: Effect of covalent coupling on dissolution and mechanical properties and fabrication of porous scaffolds. Soft Matter 8 : 4822-4832. View
  14. Ji W, Sun Y, Yang F, van den Beucken JJP, Fan M, et al. (2011) Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue Engineering Applications. Pharm Res 28: 1259-1272. View
  15. Baumgarten PK (1971) Electrostatic spinning of acrylic microfibers. J Colloid Interface Sci 36: 71-79. View
  16. Ho GH, Ho TI, Hsieh KH, Su YC, Lin PY, et al. (2006) γ-polyglutamic acid produced by Bacillus subtilis (natto): Structural characteristics, chemical properties and biological functionalities. J Chin Chem Soc 53: 1363-1384. View
  17. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, et al. (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3: 1107-1113. View
  18. Oliver MS, Blohowiak KY, Dauskardt RH (2010) Molecular structure and fracture properties of ZrOX/Epoxysilane hybrid films. J Sol-Gel Sci Techn 55: 360-368. View
  19. Yabuta T, Tsuru K, Hayakawa S, Ohtsuki C, Osaka A (2000) Synthesis of Bioactive Organic-Inorganic Hybrids with γ-Methacryloxypropyltrimethoxys ilane. J Sol-Gel Sci Techn 19: 745-748. View
  20. Sung MH, Park C, Kim C-J, Poo H, Soda K, et al. (2005) Natural and edible biopolymer poly-γ-glutamic acid: synthesis, production, and applications. Chem Rec 5: 352-366. View
  21. Lin CC, Metters AT (2006) Hydrogels in controlled release formulations: Network design and mathematical modeling. Adv Drug Deliv Rev 58: 1379- 1408. View