Profile
International Journal of Metallurgical & Materials Engineering Volume 3 (2017), Article ID 3:IJMME-130, 7 pages
http://dx.doi.org/10.15344/2455-2372/2017/130
Original Article
Special Issue: Thermoelectric Materials Properties and Performances
Thermoelectric Properties of Texture-controlled MnSi1.7-based Composite Thin Films

Yosuke Kurosaki*, S. Yabuuchi, A. Nishide, N. Fukatani and J. Hayakawa

Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan
Dr. Yosuke Kurosaki, Center for Exploratory Research, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan; E-mail: yosuke.kurosaki.uy@hitachi.com
04 November 2016; 11 January 2017; 13 January 2017
Kurosaki Y, Yabuuchi S, Nishide A, Fukatani N, Hayakawa J (2017) Thermoelectric Properties of Texture-controlled MnSi1.7-based Composite Thin Films. Int J Metall Mater Eng 3: 130. doi: https://doi.org/10.15344/2455-2372/2017/130
This work was supported by TherMAT.

References

  1. Yamamoto A, Ghodke S, Miyazaki H, Inukai M, Nishino Y, et al. (2016) Thermoelectric properties of supersaturated Re solid solution of higher manganese silicide. Jpn J Appl Phys 55: 020301. View
  2. Fedorov MI and Zaitsev VK (2006) Thermoelectric Handbook. CRC Press Chap. 31.
  3. Miyazaki Y (2013) Thermoelectric Nanomaterials. Springer Chap. 7.
  4. Migas DB, Shaposhnikov VL, Filonov AB, Borisenko VE, Dorozhkin NN (2008) Ab initio study of the band structures of different phases of higher manganese silicides. Phys Rev B 77: 075205. View
  5. Yabuuchi S, Kageshima H, Ono Y, Nagase M, Fujiwara A, Ohta E (2008) Origin of ferromagnetism of MnSi1.7 nanoparticles in Si: First-principles calculations. Phys Rev B 78: 045307. View
  6. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413: 597-602. View
  7. Dresselhaus MS, Chen G, Tang MY, Yang R, Lee H, et al. (2007) New Direction for Low-Dimensional Thermoelectric Materials. Adv Mater 19: 1043-1053. View
  8. Kurosaki Y, Yabuuchi S, Nishide A, Fukatani N, Hayakawa J (2016) Reduction of thermal conductivity in MnSi1.7 multi-layered thin films with artificially inserted Si interfaces. Appl Phys Lett 109: 1.4960634. View
  9. Allam A, Boulet P, Record MC (2013) Phase formation in Mn-Si thin films during rapid thermal annealing. Intermetallics 37: 69-75. View
  10. Nedelcu I, E van de Kruijs RW, Yakshin AE, Bijkerk F (2007) Temperaturedependent nanocrystal formation in Mo/Si multilayers. Phys Rev B 76: 245404. View
  11. Streller F, Agarwal R, Mangolini F, Carpick W (2015) Novel metal silicide thin films by design via controlled solid-state diffusion. Chem Mater 27: 4247-4253. View
  12. Massalski TB (1996) Binary alloys phase diagrams. ASM: Materials Park.
  13. Zhang L, Ivey DG (1991) Low temperature reactions of thin layers of Mn with Si. J Mater Res 6: 1518-1531. View
  14. Walser RM, Bené RW (1976) First phase nucleation in silicon-transitionmetal planar interfaces. Appl Phys Lett 28: 624-625. View
  15. Weber ER (1983) Transition metals in silicon. Appl Phys A 30: 1-22. View
  16. Tsaur BY, Lau SS, Mayer JW, and Nicolet MA (1981) Sequence of phase formation in planar metal-Si reaction couples. Appl Phys Lett 38: 922-924. View
  17. Gӧsele U and Tu KN (1982) Growth kinetics of planar binary diffusion couples: “Thin-film case” versus “Bulk cases”. J Appl Phys 53: 3252-3260. View
  18. Saša B, Stearns DG, and Kearney PA (2001) Investigation of the amorphous-to-crystalline transition in Mo/Si multilayers. J Appl Phys 90: 1017-1025. View
  19. Holloway K, Sinclair R (1988) High-resolution and in situ TEM studies of annealing of Ti-Si multilayers. J Less-Common Met 140: 139-148. View
  20. Windt DL, Christensen FE, Craig WW, Hailey C, Harrison FA, et al. (2000) Growth, structure, and performance of depth-graded W/Si multilayers for hard x-ray optics. J Appl Phys 88: 460-470. View
  21. Yulin S, Feigl T, Kuhlmann T, and Kaiser N (2002) Interlayer transition zones in Mo/Si superlattices. J Appl Phys 92: 1216-1220. View
  22. Hou QR, Zhao W, Chen YB, and He YJ (2010) Preparation of n-type nanoscale MnSi1.7 films by addition of iron. Mat Chem Phys 121: 103-108. View
  23. The density of thin films was evaluated by XRR (X-ray Reflectivity) measurements. The density was determined from the total reflection critical angle and estimated to be 4.2, 4.2, 4.0, and 3.9 g/cm3 when f is 1, 2, 4, and 6, respectively. View
  24. The resistivity of sputtered Si single layer: SiOx//Si(160) was evaluated to be over 1 Ωm, which is fairly large compared with MnSi1.7-based compounds.
  25. Pretorius R (1996) Prediction of silicide formation and stability using heats of formation. Thin Solid Films 290-291: 477-484. View
  26. Fleischauer MD, Mar R, and Dahn JR (2007) Method to predict phase formation and specific capacity for lithium in codeposited silicon-transition metal thin films. J Electrochem Soc 154: A151-A155.
  27. Novikov SV, Burkov AT, Schumann J (2013) Enhancement of thermoelectric properties in nanocrystalline M-Si thin film composites (M = Cr, Mn). J Alloys Comp 557: 239-243.