Profile
International Journal of Metallurgical & Materials Engineering Volume 1 (2015), Article ID 1:IJMME-116, 9 pages
http://dx.doi.org/10.15344/2455-2372/2015/116
Research Article
Electrical Resistance Evolution of Cu Redistribution Layer Electroplated on a Si Interposer

Wan-Gyu Lee

Department of Nano CMOS, National NanoFab Center, Daejeon, 305-806, South Korea
Dr. Wan-Gyu Lee, Department of Nano CMOS, National NanoFab Center, Daejeon, 305-806, South Korea; E-mail: wangyulee@nnfc.re.kr
11 July 2015; 13 October 2015; 15 October 2015
Lee WG (2015) Electrical Resistance Evolution of Cu Redistribution Layer Electroplated on a Si Interposer. Int J Metall Mater Eng 1: 116. doi: http://dx.doi.org/10.15344/2455-2372/2015/116

References

  1. IBM Press Release, April 2007. View
  2. Koyanagi M (2013) Heterogeneous 3D Integration - Technology Enabler toward Future Super-Chip. IEEE Internation Electron Device Meeting, pp. 38-45. View
  3. Knickerbocker JU, Andry PS, Dang B, Horton RR, Patel CS, et al. (2008) 3D silicon integration. IEEE Electronic Components & Technology Conference 58th, pp. 538-543.
  4. Kuroda T, Miura V (2007) Perspective of low-power and high-speed wireless inter-chip communications for SiP integration. ESSDERC 2006 - Proceedings of the 36th European Solid-State Device Research Conference, pp. 3-6.
  5. Pares G, Karoui C, Zaid A, Dosseul F, Feron M, et al. (2013) Full Integration of a 3D Demonstrator with TSV First Interposer, Ultra Thin Die Stacking and Wafer Level Packaging. IEEE Electronic Components & Technology Conference, pp. 305-316.
  6. Koyanagi M (2012) Thinning, Stacking, and TSV Proximity Effects for Poly and High-K/Metal Gate CMOS Devices in an Advanced 3D Integration Process. IEEE Internation Electron Device Meeting, pp.793-796. View
  7. Cui Q, Sun X, Zhu Y, Ma S, Chen J, et al. (2011) Design and optimization of Redistribution Layer (RDL) on TSV interposer for high frequency applications. IEEE International Conference on Electronic Packaging Technology & High Density Packaging 52-56. View
  8. Okoro C, Vanstreels K, Labie R, Lühn O, Vandevelde B, et al. (2010) Influence of annealing conditions on the mechanical and microstructural behavior of electroplated Cu-TSV. J Micromech Microeng 20: 045032. View
  9. Andricacos PC (1998) Damascene copper plating for chip interconnections. IBM J Res Dev 42: 567-574. View
  10. Chang SC, Shieh JM, Dai BT, Feng MS, Li YH (2002) The effect of plating current densities on self-annealing behaviors of electroplated copper films. J Electrochemical Society. 149: G535-G538. View
  11. Yoon MS, Park YJ, Joo YC (2002) Impurity redistributions in electroplated Cu films during self-annealing. Thin Solid Films. 408: 230-235. View
  12. Jaeger RC (2002) Introduction to Microelectronics Fabrication, Prentice Hall, Inc., New Jersey, pp. 83-83.
  13. 13. Wagner CZ (1933) Theory of the tarnishing process. Phys Chem B21: 25- 41.
  14. Deal BE (1963) The oxidation of silicon in dry oxygen, wet oxygen and steam. J Electrochem Soc 110 527-533. View
  15. Mencer DE, Hossain MA, Schennach R, Grady T, McWhinney H, et al. (2004) On the surface analysis of copper oxides: the difficulty in detecting Cu3O2. Vacuum 77: 27-35. View
  16. Cabrera N, Mott NF (1948-1949) Theory of the oxidation of metals. Rep Prog Rhys 12: 163-184. View
  17. Mukhambetov DG, Chalaya OV (2002) On the mechanism of selfdeceleration of the thin oxide film Growth. J Vac Sci Technol A 20: 839-842. View
  18. Krishnamurthy B, White RE, Ploehn HJ (2002) Electric field strength effects on time-dependent passivation of metal surfaces. Electrochimica Acta 47: 2505-2513. View
  19. Frerichs R, Liberman I (1961) Surface mobility copper ions on cuprous oxide. Phys Rev 121: 991-996. View
  20. Feldman W (1943) The electrical conductivity and isothermal hall effect in cuprous oxide. Phys Rev 64: 113-118. View
  21. Platzman I, Brener R, Haick H, Tannenbaum R (2008) Oxidation of polycrystalline copper thin films at ambient conditions. J Phys Chem C 112: 1101-1108. View
  22. Moissel L (1970) Electrical properties of metallic thin films, in Handbook of Thin Films, McGraw Hill, New York, Chap. 13.
  23. Wolf S (2002) Deep-submicron process technology" in Silicon processing for the VLSI Era, Lattice Press, California 4: 770-772.
  24. Lim JW, Miyake K, Isshiki M (2003) Characteristics of ion beam deposited copper thin films as a seed layer effect of negative substrate bias voltage. Thin Solid Films 434: 34-39.
  25. Tu KN, Mayer JW, Feldman LC (1992) Electronic thin film science for electrical engineering and materials scientists, Macmillan Publishing Company, New York, Maxwell Macmillan Canada, Toronto, and Maxwell Macmillan International, New York, Oxford, Singapore, Sydney, 1992, Chap. 7.
  26. Swalin (1972) Thermodynamics of solids" in the Wiley Series on the Science and Technology of Materials, John Wiley & Sons, New York, Chap. 13.
  27. Zhang D, Liu Y, Yang H (2004) The electrical properties and the interfaces of Cu2O/ZnO/ITO p-i-n Heterojunction. Physica B: Condensed Matter 351: 178-183.
  28. Caballero-Briones F, Artes JM, Diez-Perez I, Gorostiza P, Sanz F (2009) Direct Observation of the Valence Band Edge by in Situ ECSTM-ECTS in p-Type Cu2O Layers Prepared by Copper Anodization. J Phys Chem C 113: 1028-1036. View
  29. Reiss H, Fuller CS, Morin Fj (1956) Chemical interactions among defects in Germanium and Silicon. Bell Syst Tech 35: 535-636. View
  30. Lee SY, Mettlach N, Nguyen N, Sun YM, White JM (2002) Copper oxide reduction through vacuum annealing. J Applied Surface Science 206: 102- 109. View