Profile
International Journal of Clinical Research & Trials Volume 6 (2021), Article ID 6:IJCRT-157, 8 pages
https://doi.org/10.15344/2456-8007/2021/157
Research Article
Artificial Intelligence in Colorectal Polyp Detection and Characterization

Alexander Le, Moro O. Salifu and Isabel M. McFarlane*

Department of Internal Medicine, State University of New York, USA
Dr. Isabel M. McFarlane, Clinical Assistant Professor of Medicine, Director, Third Year Internal Medicine Clerkship, Department of Internal Medicine, Brooklyn, NY 11203, USA Tel: 718-270-2390, Fax: 718-270-1324; E-mail: isabel.mcfarlane@downstate.edu
05 March 2021; 18 March 2021; 20 March 2021
Le A, Salifu MO, McFarlane IM (2021) Artificial Intelligence in Colorectal Polyp Detection and Characterization. Int J Clin Res Trials 6: 157. doi: https://doi.org/10.15344/2456-8007/2021/157

References

  1. Marr B (20190) How much data do we create every day? The mind-blowing stats everyone should read. [View]
  2. Global Innovation Index (2019) 4 ways data is improving healthcare. [View]
  3. Topol EJ (2019) High-performance medicine: The convergence of human and artificial intelligence. Nature Medicine 25: 44-56. [CrossRef] [Google Scholar]
  4. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, et al. (2018). Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2: 158-164. [CrossRef] [Google Scholar] [PubMed]
  5. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, et al. (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316: 2402. [CrossRef] [Google Scholar] [PubMed]
  6. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, et al. (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542: 115-118. [CrossRef] [Google Scholar] [PubMed]
  7. Tang A, Tam R, Cadrin-Chênevert A, Guest W, Chong J, et al. (2018) Canadian Association of Radiologists white paper on artificial intelligence in radiology. Can Assoc Radiol J 69: 120-135. [CrossRef] [Google Scholar] [PubMed]
  8. Chen H, Sung JJ (2021) Potentials of AI in medical image analysis in Gastroenterology and hepatology. J Gastroenterol Hepatol 36: 31-38. [CrossRef] [Google Scholar] [PubMed]
  9. Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW, et al. (2016) Screening for colorectal cancer. JAMA 315: 2564. [CrossRef] [PubMed]
  10. Ward EM, Sherman RL, Henley SJ, Jemal A, Siegel DA, et al. (2019) Annual report to the nation on the status of cancer, featuring cancer in men and women age 20-49 years. J Natl Cancer Inst 111: 1279-1297. [CrossRef] [Google Scholar] [PubMed]
  11. Rex DK, Boland CR, Dominitz JA, Giardiello FM, Johnson DA, et al. (2017) Colorectal cancer Screening: Recommendations for physicians and patients from the U.S. Multi-society Task force on colorectal cancer. Am J Gastroenterol 153: 307-323. [CrossRef] [Google Scholar] [PubMed]
  12. Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, et al. (2014) Adenoma detection rate and risk of colorectal cancer and death. New England Journal of Medicine 370: 1298-1306. [CrossRef] [Google Scholar]
  13. Rex D, Cutler C, Lemmel G, Rahmani E, Clark D, et al. (1997) Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology 112: 24-28. [CrossRef] [Google Scholar] [PubMed]
  14. Heresbach D, Barrioz T, Lapalus M, Coumaros D, Bauret P, et al. (2008) Miss rate for colorectal neoplastic polyps: A prospective multicenter study of back-to-back video colonoscopies. Endoscopy 40: 284-290. [CrossRef] [Google Scholar] [PubMed]
  15. Wang Y, Tavanapong W, Wong J, Oh JH, De Groen PC, et al. (2015) Polyp-alert: Near real-time feedback during colonoscopy. Comput Methods Programs Biomed 120: 164-179. [CrossRef] [Google Scholar] [PubMed]
  16. Turing A (2004) Computing machinery and intelligence (1950). The Essential Turing. [CrossRef]
  17. McCarthy J, Minsky ML, Rochester N, Shannon CE (2006) A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Magazine 27: 12. [CrossRef] [Google Scholar]
  18. Russell SJ, Norvig P (2009) Artificial intelligence: a modern approach. 3rd ed. Harlow: Pearson Education.
  19. Kaul V, Enslin S, Gross SA (2020) History of artificial intelligence in medicine. Gastrointest Endosc 92: 807-812. [CrossRef] [Google Scholar] [PubMed]
  20. Yang YJ, Bang CS (2019) Application of artificial intelligence in gastroenterology. World J Gastroenterol 25: 1666-1683. [CrossRef] [Google Scholar] [PubMed]
  21. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, et al. (2017) Deep learning: A primer for radiologists. Radiographics 37: 2113-2131. [CrossRef] [Google Scholar] [PubMed]
  22. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, et al. (2015) Personalized nutrition by prediction of glycemic responses. Cell 163: 1079-1094. [CrossRef] [Google Scholar] [PubMed]
  23. Deo RC (2020) Machine learning in medicine. Circulation 142: 1521-1523. [CrossRef] [Google Scholar] [PubMed]
  24. Chollet F, Allaire JJ (2016) Deep Learning with R and Keras: The hands-on manual from the developers at Keras and RStudio. Germany: MITP Publishing GmbH & Co. KG.
  25. Asadi H, Dowling R, Yan B, Mitchell P (2014) Machine learning for outcome prediction of acute ischemic stroke post intra-arterial therapy. PLoS ONE 9: e88225. [CrossRef] [Google Scholar] [PubMed]
  26. Wimmer G, Vecsei A, Uhl A (2016) CNN transfer learning for the automated diagnosis of celiac disease. 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA). [CrossRef] [Google Scholar]
  27. Hoerter N, Gross SA, Liang PS (2020) Artificial Intelligence and Polyp Detection. Curr Treat Options Gastroenterol 18: 120-136. [CrossRef] [Google Scholar] [PubMed]
  28. Corley DA, Jensen CD, Marks AR, Zhao WK, Lee JK, et al. (2014) Adenoma detection rate and risk of colorectal cancer and death. New England Journal of Medicine 370: 1298-1306. [CrossRef] [Google Scholar]
  29. Karkanis S, Magoulas G, Iakovidis D, Karras D, Maroulis D, et al. (2001) Evaluation of textural feature extraction schemes for neural network-based interpretation of regions in medical images. Proceedings 2001 International Conference on Image Processing. [CrossRef] [Google Scholar]
  30. Karkanis S, Iakovidis D, Maroulis D, Karras D, Tzivras M, et al. (2003) Computer-aided tumor detection in endoscopic video using color wavelet features. IEEE Transactions on Information Technology in Biomedicine 7: 141-152. [CrossRef] [Google Scholar]
  31. Maroulis D, Iakovidis D, Karkanis S, Karras D (2003) Cold: A versatile detection system for colorectal lesions in endoscopy video-frames. Comput Methods Programs Biomed 70: 151-166. [CrossRef] [Google Scholar] [PubMed]
  32. Iakovidis DK, Maroulis DE, Karkanis SA (2006) An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy. Comput Biol Med 36: 1084-1103. [CrossRef] [Google Scholar] [PubMed]
  33. Tjoa MP, Krishnan SM (2003) Feature extraction for the analysis of colon status from the endoscopic images. Biomed Eng Online 2: 9. [CrossRef] [Google Scholar] [PubMed]
  34. Zheng M, Krishnan S, Tjoa M (2005) A fusion-based clinical decision support for disease diagnosis from endoscopic images. Computers in Biology and Medicine 35: 259-274. [CrossRef] [Google Scholar]
  35. Wang P, Xiao X, Liu J, Li L, Tu M, et al. (2017) A prospective validation of deep learning for Polyp Auto-detection during colonoscopy: 2017 international award. American Journal of Gastroenterology 112: 106-110. [CrossRef] [Google Scholar]
  36. Misawa M, Kudo S, Mori Y, Cho T, Kataoka S, et al. (2018) Artificial intelligence-assisted polyp detection for colonoscopy: Initial experience. Gastroenterology 154: 2027-2029. [CrossRef] [Google Scholar] [PubMed]
  37. Billah M, Waheed S, Rahman MM (2017) An automatic gastrointestinal polyp detection system in Video Endoscopy using fusion of color wavelet and convolutional neural network features. Int J Biomed Imaging 2017: 9545920. [CrossRef] [Google Scholar] [PubMed]
  38. Zhang R, Zheng Y, Mak TW, Yu R, Wong SH, et al. (2017) Automatic detection and classification of Colorectal Polyps by Transferring Low-level CNN features From nonmedical domain. IEEE Journal of Biomedical and Health Informatics 21: 41-47. [CrossRef] [Google Scholar]
  39. Li T, Cohen J, Craig M, Tsourides K, Mahmud N, et al. (2016) Mo1079 The Next Endoscopic Frontier: A novel computer vision program accurately identifies Colonoscopic Colorectal adenomas. Gastrointestinal Endoscopy. [CrossRef] [Google Scholar]
  40. Tajbakhsh N, Gurudu SR, Liang J (2016) Automated polyp detection in colonoscopy videos using shape and context information. IEEE Trans Med Imaging 35: 630-644. [CrossRef] [Google Scholar] [PubMed]
  41. Fernández-Esparrach G, Bernal J, López-Cerón M, Córdova H, Sánchez-Montes C, et al. (2016) Exploring the clinical potential of an automatic colonic polyp detection method based on the creation of energy maps. Endoscopy 48: 837-842. [CrossRef] [Google Scholar] [PubMed]
  42. Wang Y, Tavanapong W, Wong J, Oh JH, De Groen PC (2015) Polyp-alert: Near real-time feedback during colonoscopy. Comput Methods Programs Biomed 120: 164-179. [CrossRef] [Google Scholar] [PubMed]
  43. Urban G, Tripathi P, Alkayali T, Mittal M, Jalali F, et al. (2018) Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology 155: 1069-1078. [CrossRef] [Google Scholar] [PubMed]
  44. Byrne MF, Chapados N, Soudan F, Oertel C, Linares Pérez M, et al. (2017) Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 68: 94-100. [CrossRef] [Google Scholar] [PubMed]
  45. Yu L, Chen H, Dou Q, Qin J, Heng PA (2017) Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos. IEEE Journal of Biomedical and Health Informatics 21: 65-75. [CrossRef] [Google Scholar]
  46. Klare P, Sander C, Prinzen M, Haller B, Nowack S, et al. (2019) Automated polyp detection in the colorectum: A prospective study (with videos). Gastrointest Endosc 89: 576-582. [CrossRef] [Google Scholar] [PubMed]
  47. Wang P, Berzin TM, Brown JRG, Bharadwaj S, Becq A, et al. (2019) Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: A prospective randomised controlled study. Gut 68: 1813-1819. [CrossRef] [Google Scholar] [PubMed]
  48. Repici A, Badalamenti M, Maselli R, Correale L, Radaelli F, et al. (2020) Efficacy of real-time computer-aided detection of colorectal neoplasia in a randomized trial. Gastroenterology 159: 512-520. [CrossRef] [Google Scholar] [PubMed]
  49. Wilson AI, Saunders BP (2015) New paradigms in polypectomy: resect and discard, diagnose and disregard. Gastrointest Endosc Clin N Am 25: 287-302. [CrossRef] [Google Scholar] [PubMed]
  50. Hassan C, Pickhardt PJ, Rex DK (2010) A Resect and discard strategy would Improve cost-effectiveness of colorectal cancer screening. Clin Gastroenterol Hepatol 8: 856-869. [CrossRef] [Google Scholar] [PubMed]
  51. Mori Y, Kudo S, Misawa M, Takeda K, Kudo T, et al. (2020) Artificial intelligence for colorectal polyp detection and characterization. Current Treatment Options in Gastroenterology 18: 200-211. [CrossRef] [Google Scholar]
  52. Rogart JN, Siddiqui UD, Jain D, Oren T, Lim JK, et al. (2008) Narrow-band imaging without high magnification to differentiate polyps during real-time colonoscopy: Improvement with experience. Gastrointest Endosc 68: 1136-1145. [CrossRef] [Google Scholar] [PubMed]
  53. Sikka S, Ringold D, Jonnalagadda S, Banerjee B (2008) Comparison of white light and narrow band high definition images in predicting colon polyp histology, using standard colonoscopes without optical magnification. Endoscopy 40: 818-822. [CrossRef] [Google Scholar] [PubMed]
  54. Tischendorf J, Gross S, Winograd R, Hecker H, Auer R, et al. (2010) Computer-aided classification of colorectal polyps based on vascular patterns: A pilot study. Endoscopy 42: 203-207. [CrossRef] [Google Scholar] [PubMed]
  55. Gono K, Obi T, Yamaguchi M, Ohyama N, Machida H, et al. (2004) Appearance of enhanced tissue features in narrow-band endoscopic imaging. J Biomed Opt 9: 568-577. [CrossRef] [Google Scholar] [PubMed]
  56. Gross S, Trautwein C, Behrens A, Winograd R, Palm S, et al. (2011) Computer-based classification of small colorectal polyps by using narrow-band imaging with optical magnification. Gastrointest Endosc 74: 1354-1359. [CrossRef] [Google Scholar] [PubMed]
  57. Takemura Y, Yoshida S, Tanaka S, Kawase R, Onji K, et al. (2012) Computer-aided system for predicting the histology of colorectal tumors by using narrow-band imaging magnifying colonoscopy (with video). Gastrointest Endosc 75: 179-185. [CrossRef] [Google Scholar] [PubMed]
  58. Kominami Y, Yoshida S, Tanaka S, Sanomura Y, Hirakawa T, et al. (2016) Computer-aided diagnosis of colorectal polyp histology by using a real-time image recognition system and narrow-band imaging magnifying colonoscopy. Gastrointest Endosc 83: 643-649. [CrossRef] [Google Scholar] [PubMed]
  59. Inoue H, Kudo S, Shiokawa A (2005) Technology insight: Laser-scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract. Nat Clin Pract Gastroenterol Hepatol 2: 31-37. [CrossRef] [Google Scholar] [PubMed]
  60. Mori Y, Kudo S, Wakamura K, Misawa M, Ogawa Y, et al. (2015) Novel computer-aided diagnostic system for colorectal lesions by using endocytoscopy (with videos). Gastrointest Endosc 81: 621-629. [CrossRef] [Google Scholar] [PubMed]
  61. Mori Y, Kudo S, Misawa M, Saito Y, Ikematsu H, et al. (2018) Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy. Ann Intern Med 169: 357-366. [CrossRef] [Google Scholar] [PubMed]
  62. Kuiper T, Alderlieste Y, Tytgat K, Vlug M, Nabuurs J, et al. (2014) Automatic optical diagnosis of small colorectal lesions by laser-induced autofluorescence. Endoscopy 47: 56-62. [CrossRef] [Google Scholar] [PubMed]
  63. Rath T, Tontini G, Vieth M, Nägel A, Neurath M, et al. (2016) In vivo real-time assessment of colorectal polyp histology using an optical biopsy forceps system based on laser-induced fluorescence spectroscopy. Endoscopy 48: 557-562. [CrossRef] [Google Scholar] [PubMed]
  64. Horiuchi H, Tamai N, Kamba S, Inomata H, Ohya TR, et al. (2019) Real-time computer-aided diagnosis of diminutive rectosigmoid polyps using an auto-fluorescence imaging system and novel color intensity analysis software. Scand J Gastroenterol 54: 800-805. [CrossRef] [Google Scholar] [PubMed]
  65. Byrne MF, Chapados N, Soudan F, Oertel C, Pérez ML, et al. (2017) Real-time differentiation of adenomatous and hyperplastic diminutive colorectal polyps during analysis of unaltered videos of standard colonoscopy using a deep learning model. Gut 68: 94-100. [CrossRef] [Google Scholar] [PubMed]
  66. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, et al. (2015) ImageNet large Scale visual Recognition Challenge. International Journal of Computer Vision 115: 211-252. [CrossRef] [Google Scholar]
  67. Lange TD, Halvorsen P, Riegler M (2018) Methodology to develop machine learning algorithms to improve performance in gastrointestinal endoscopy. World J Gastroenterol 24: 5057-5062. [CrossRef] [Google Scholar] [PubMed]
  68. Hoerter N, Gross SA, Liang PS (2020) Artificial intelligence and polyp detection. Curr Treat Options Gastroenterol 18: 120-136. [CrossRef] [Google Scholar] [PubMed]
  69. Alagappan M, Brown JRG, Mori Y, Berzin TM (2008) Artificial intelligence in gastrointestinal endoscopy: The future is almost here. World J Gastrointest Endosc 10: 239-249. [CrossRef] [Google Scholar] [PubMed]