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Introduction

The human race produces about 2.5 quintillion bytes (1018) of data 
every day, with over 90% of it having been produced over the past five 
years [1]. Though small in comparison, hospitals create 50 petabytes 
(250) of data per year, with 97% of it going unused [2]. In this data-
driven age, Artificial Intelligence (AI) using deep-learning (DL) 
has proven and continues to be an effective method for sorting and 
categorizing data, while recognizing intriguing patterns. 

Within medicine, AI has already been applied to the fields of 
radiology, neurology, orthopedics, pathology, ophthalmology, and 
gastroenterology [3].Using a database of images, AI has successfully 
been used to identify cardiovascular disease risk, diabetic retinopathy, 
and melanoma [4-6]. Additionally, AI has utilized CT scans to 
determine tumor volume in patients with hepatocellular carcinoma 
[7]. While AI has also been applied to patient demographics and 
risk factors, much of the published AI research in gastroenterology 
has been in the field of medical image analysis (MIA) - a category 
of AI which analyzes different characteristics of an image to aid in 
diagnosis, prognosis, and intervention [8].

In the field of gastroenterology, colonoscopy is one of the most 
routine procedures and is utilized to screen and monitor for colorectal 
cancer, the second leading cause of death in the United States [9,10]. 
Each physician performing this procedure is assessed by their 
adenoma detection rate (ADR), the percentage of colonoscopies 
performed where at least one adenoma is detected, with an ADR goal 
> 25% [11]. This metric is important because it has been shown that 
a 1% increase in ADR is associated with a 3% decrease in CRC [12]. 

Abstract

Background: Over the past 20 years, the advancement of artificial intelligence (AI) and deep learning 
(DL) has allowed for fast sorting and analysis of large sets of data. In the field of gastroenterology, 
colorectal screening procedures produces an abundance of data through video and imaging. With AI and 
DL, this information can be used to create systems where automatic polyp detection and characterization 
is possible. Convoluted Neural Networks (CNNs) have proven to be an effective way to increase polyp 
detection and ultimately adenoma detection rates. Different methods of polyp characterization of being 
hyperplastic vs. adenomatous or non-neoplastic vs. neoplastic has also been investigated showing 
promising results.
Findings: The rate of missed polyps on colonoscopy can be as high as 25%. At the beginning of the 2000s, 
hand-crafted machine learning (ML) algorithms were created and trained retrospectively on colonoscopy 
images and videos, achieving high sensitivity, specificity, and accuracy of over 90% in many of the studies. 
Over time, the advancement of DL and CNNs has allowed algorithms to be trained on non-medical 
images and applied retrospectively to colonoscopy videos and images with similar results. Within the past 
few years, these algorithms have been applied in real-time colonoscopies and has shown mixed results, 
one showing no difference while others showing increased polyp detection.
Various methods of polyp characterization have also been investigated. Through AI, DL, and CNNs 
polyps can be identified has hyperplastic/adenomatous or non-neoplastic/neoplastic with high sensitivity, 
specificity, and accuracy. One of the research areas in polyp characterization is how to capture the polyp 
image. This paper looks at different modalities of characterizing polyps such as magnifying narrow band 
imaging (NBI), endocytoscopy, laser-induced florescent spectroscopy, auto-florescent endoscopy, and 
white-light endoscopy.
Conclusions: Overall, much progress has been made in automatic detection and characterization of 
polyps in real time. Barring ethical or mass adoption setbacks, it is inevitable that AI will be involved in 
the field of GI, especially in colorectal polyp detection and identification.

However, some research has shown that up to 27% of polyps are 
missed [13,14].

Given the importance of ADR and the amount of video and imaging 
colonoscopies produce, research in AI application to polyp detection 
and characterization has been very popular. In the past twenty years, 
AI along with computer-aided detection and diagnosis (CADe and 
CADx) techniques have been optimized with following three goals 
for polyp detection 1) high sensitivity 2) low false positive rate 3) 
low latency so polyp detection can be done in real time [15]. These 
methods not only aim to increase ADR, but also identify hyperplastic 
vs. adenomatous polyps.

As our technology progresses and AI becomes more advanced, it 
is inevitable that AI will play a large role in colonoscopies. Thus, in 
this review article, we will discuss the basics of AI, how it has been 
used to detect and characterize polyps, and the future direction and 
complications of it.
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ML automatically creates mathematical algorithms to predict 
future outcomes and patterns from inputted data which can then be 
applied to future scenarios without human intervention [20]. Within 
ML, there are two types of learning: unsupervised learning and 
supervised learning. In unsupervised learning, unlabeled data is fed 
into the computer and commonalities are found within the dataset. 
For example, this has been used in predicting glycemic responses 
to foods and in personalized medicine through analysis of patient 
history, labs, and imaging [22,23]. In supervised learning, labeled data 
is used to create algorithms to label future data sets through clustering 
and grouping. This type of learning has been used to predict patient 
outcomes [24,25].

What is Artificial Intelligence (AI)?

In 1950, Alan Turing described how computers were as intellectually 
capable as humans, and by 1956 John McCarthy introduced the word 
Artificial Intelligence (AI) [16,17]. AI can be defined as a machine 
demonstrating human intelligence in terms of cognitive functioning, 
learning, and problem solving [18]. These machines, which were first 
comprised of “if, then rules,” have now become an aggregation of 
interconnected intricate algorithms that function like a human brain 
[19]. The way these algorithms are designed can be broken down into 
subsets within AI, the most common being machine learning (ML) 
(Figure 1) [20]. Common terminology associated with Artificial 
intelligence can be found in (Table 1).
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Figure 1: Subtypes of Artificial Intelligence. Solid lines indicate subtype and dotted lines indicate that the 
subtypes that work together.

Artificial Intelligence (AI) Machine demonstrating human cognitive intelligence

Artificial Neural Network (ANN) Multilayered network comprising of interconnected layers between an input and output layer

Machine Learning (ML) Mathematical algorithms automatically built from input data

Deep Learning (DL) Subset of ML composed of multi-layered neural network 

Convolutional Neural Network (CNN) ANN consisting of convolutional and pooling layer to extract data and connect them to create a 
classification. Mainly used for detection and recognition in an image.

Computer Aided Detection/Diagnosis 
(CADe/CADx)

Use of computer algorithm to diagnose and detect certain objects

Overfitting Error where algorithm cannot be applied to other data sets

Spectrum Bias Error when algorithm does not accurately reflect patients applied 
Table 1: Common AI Terminology.

%20http://dx.doi.org/10.15344/ijcrt/2015/101
https://doi.org/10.15344/2456-8007/2021/157
https://doi.org/10.15344/2456-8007/2021/157


Int J Clin Res Trials                                                                                                                                                                                                 IJCRT, an open access journal                                                                                                                                          
ISSN: 2456-8007                                                                                                                                                                                                     Volume 6. 2021. 157  

algorithms. Karkanis et al. developed one of the first polyp detection 
softwares called CoLD (Colorectal Lesions Detector) using texture 
and color wavelet covariance to differentiate normal from abnormal 
tissue [29,30]. A few years later, this group’s algorithm identified 
adenomatous and hyperplastic polyps with 93.6% sensitivity and 
99.3% specificity [31,32]. Similarly, Tjoa and Krishnan used a texture 
spectrum and color histogram, while Zheng et al. utilized texture 
and luminal contour to identify abnormal tissue [33,34]. While these 
methods produced results with high sensitivity and specificity, they 
were limited by their slow processing times and their inability to 
detect atypical polyps or differentiate false positive non-polyp lesions 
like stool.

As DL became more developed in the field, larger data sets were 
being analyzed to produce algorithms that could be applied to 
other videos and pictures to test for polyp detection. Some notable 
ones being Wang et al. applying DL polyp detection software to 
5545 retrospective images that had been previously diagnosed by 
endoscopists and 27461 prospective colonoscopy images from 1235 
patients [35]. Additionally, Misawa et al. used 105 polyp positive 
videos and 306 polyp negative videos to develop an algorithm with 
94% accuracy, but with a false positive of 60% [36].

Application of CNN in polyp detection also proved promising. 
Billah et al. developed an algorithm with 99% sensitivity and specificity 
on a public dataset by using a CNN and their own algorithm [37]. 
However, processing time was not mentioned in their study. Likewise, 
Zhang et al. utilized millions of images from ImageNet, a database of 
everyday objects like fruits and cars, to develop an algorithm which 
achieve a polyp detection sensitivity of 98% [38]. When comparing 
this CNN to an endoscopist, it outperformed the endoscopist 86% to 
74% in terms of accuracy. Additionally, Li et al. used a CNN on 32305 
colonoscopy images and developed an accuracy of 86% and sensitivity 
of 73% [39]. All of these studies show promising results on how DL 
and CNN can be used to identify polyps.

Since its invention in 1952, ML has evolved into what is now known 
as deep learning (DL) - a composition of algorithms that make up an 
artificial neural network (ANN). DL transcended ML into practical 
use because of its multilayer back-propagation algorithm, which 
allows it to cross reference parameters in each layer and create outputs 
more efficiently (Figure 2) [21]. In essence, smaller patterns and 
details can be identified through DL layers with earlier layers having 
generic details and later ones being more specific [26].

In the polyp detection, DL has been utilized with different 
Convolutional Neural Networks (CNN) to create computer vision, 
a mechanism to process a series of images or videos (Figure 2). 
CNNs work by extracting multiple specialized features of an image 
to create multiple maps, which are then aggregated together to 
produce an output [20]. This can be compared to the way the human 
brain processes an image. Basic parts of an image like boundaries 
and light and dark areas are first recognized. These basic parts are 
then combined to make simple shapes and eventually complex ones 
in subsequent layers. These “convolutional” layers dissect an image 
into easily processed parts, which later feed into a “pooling” layer to 
conserve data size and reduce noise. Ultimately, this process creates an 
algorithm which identifies the probability a future image will contain 
similar features without the programmer describing the specific 
feature. This is important in polyp detection because endoscopists 
tend to have difficulties in describing the polyps in detail [27].

Colorectal Polyp Detection

The rate of polyps missed on colonoscopy is as high as 25% [28]. 
This may be due to poor bowel prep, appearance of the polyp, or the 
endoscopist’s inspection technique. Improvement in polyp detection 
may lead to an overall decrease in colon cancer.

By the early 2000s, researchers had begun investigating the 
applications of ML in polyp detection. Using recorded videos and 
images, hand-crafted algorithms targeting polyp features such 
as color, shape, or texture were initially used for many of the ML 
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Figure 2: Convolutional Neural Network application to facial recognition. Diagram also shows the layout of ANN and 
setup of back-propagation algorithm (Adapted from Hoerter et al. [68]).
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To date, only three real-time in vivo studies have been performed. 
Klare et al. utilized software which analyzed color, texture, and 
structure with 50 ms lag time on 55 routine colonoscopies [46]. Their 
results showed comparable results between the endoscopist and the 
software. The endoscopists polyp and adenoma detection rates were 
56.4% and 30.9%, while the software’s detection rates were 50.9% and 
29.1%, respectively. The software also did not detect any additional 
polyps that the endoscopist missed. Wang et al.’s in vivo study also 
produced similar results [47]. In a randomized controlled trial of 1058 
patients with their CNN, their software had had an ADR of 29.1% 
vs 20.3% of the endoscopists (Figure 3). This difference was mainly 
due to the polyps being smaller than 10 mm and a higher portion of 
them being hyperplastic polyps. Additionally, only there were only 
39 false positives (0.075) in the trial, which is on average in a regular 
colonoscopy. Finally, Repici et al. performed a randomized trial with 
685 people of AI for polyp detection in real-time colonoscopy for 
indications of screening, surveillance, or fecal immunochemical test 
positivity [48]. Their system improved ADR from 40.4% to 54.8% 
when compared to a control, especially in those <5 mm in size and 
those with a diameter 5-9 mm. Most importantly, their system did not 
increase withdrawal time.

Colorectal Polyp Characterization

When polyps are located, they must be characterized to determine if 
they must be biopsied. In the field of AI, this is referred to as computer-
aided diagnosis (CADx). Typically, when polyps are identified, 
they can be left alone, resected and discarded or sent to the lab for 
histopathological examination. These strategies known as “diagnose 
and disregard” and “resect and discard” have been suggested to save 
millions of dollars every year in the U.S [49,50]. Current techniques 
being used to characterize polyps include magnifying narrow 
band imaging (NBI), endocytoscopy, laser-induced fluorescence 

The most important application of these AI algorithms is in real-
time detection. The goals in real time detection are high sensitivity, 
high specificity, with low latency between detecting the polyp and 
when it appears on the secondary screen. Typically, colonoscopy 
videos run at 25-30 frames per second or 33-40 ms per frame. With 
traditional ML, Tajbakhsh et al. was able to base their algorithm off of 
hybrid context-shape, where context was used to filter out non-polyps 
and shapes were used to identify polyps [40]. This approach yielded 
88% sensitivity with a latency of 0.3 seconds. However, these results 
are limited because they were done retrospectively on 25 polyps. 
Likewise, Fernandez-Esparrach et al. used energy maps from the 
localization of polyps and their boundaries and achieved a sensitivity 
of 70.4% and specificity of 72.4% in 24 videos containing 31 polyps 
[41]. Finally, Wang et al. utilized “polyp edges” to achieve a detection 
rate of 97.7% with 36 false positives coming from folds, the ileocecal 
valve, appendiceal orifice, and areas of colon with residual fluid [42].

One of the most promising applications of CNN in real-time 
detection is from Urban et al. where ImageNet was used to develop 
the algorithm and then subsequently applied to multiple colonoscopy 
images and 11 videos [43]. Their method achieved 97% sensitivity, 
95% specificity, 96% accuracy, with the algorithm executing at 10ms 
per frame. On top of that, the CNN method detected 17/45 polyps 
that were missed by the endoscopists. Byrne et al. also developed a 
deep CNN for real-time detection using narrow-band image video 
frames and videos from colonoscopies to achieve a sensitivity of 
98%, specificity of 83%, and accuracy of 94% on 125 videos of 106 
polyps [44]. Interestingly, Yu et al. developed a three-dimensional 
CNN using spatiotemporal features of colonoscopy videos and was 
able to reduce the number of false positives from a previous 2015 data 
set [45]. These advances in CNN related research in regard to high 
sensitivity, specificity, low lag time, and different methods of polyp 
detection show promise to application in real time detection.
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Figure 3: Polyp Detection using artificial intelligence (adapted from Alagappan et al. [69]). 
A: Original polyp image; B: Potential polyp is boxed; C: Red area indicates area of high polyp 
probability. Blue area indicates area of low probability; D: Blue indicates polyp location.
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Endocytoscopy (EC) is another form of optical diagnosis that has 
benefited from CADx development. In EC, endoscopists look at the 
microvascular structure and surface epithelial at the cellular level 
[59]. This method of optical diagnosis has been of particular interest 
because it provides focused and fixed images for AI analysis. The 
earliest study involving EC comes from Mori et al. in 2015 when they 
used images from 176 polyps and 152 images [60]. Their CAD system 
produced a sensitivity and specificity of 92% and 79.5% vs. 92.7% and 
91% when compared to endoscopists. This same group most recently 
performed a prospective study with 466 polyps from 791 patient, 
which achieved a sensitivity and specificity of 97% and 67% and a 
negative predictive value of 93.7% [61]. This study, however, elucidated 
the difficulty of identifying diminutive non-neoplastic polyps, as they 
were only correctly identified 70% of the time. Widespread use of EC 
is limited by the availability of EC scopes.

In laser-induced fluorescence spectroscopy, polyps are determined 
to be non-neoplastic or neoplastic by the light it reflects back once 
it shown laser light. Kuiper et al. prospective research showed 83% 
sensitivity, 59.7% specificity, 71% positive predictive value (PPV), and 
74% negative predictive value (NPV) [62]. However, Rath et al. also 
investigated the same method and produced a NPV of 96.1% [63]. 

spectroscopy, and Auto-Florescent endoscopy (Table 2) [51]. 
However, amongst these techniques, it has been shown that there 
is much variability amongst users [52-54]. The use of CADx may 
decrease this discrepancy between endoscopists.

NBI is an optical modality that uses blue and green light to look at 
polyp vessel size and pattern (Figure 4). Using the color, vessels, and 
surface patterns, endoscopists can differentiate between hyperplastic 
and adenomatous polyps [55]. In 2010, Tischendort et al. used 
Narrow Band Images (NBI) images to create a classification model 
based off of a colorectal polyp’s vascular pattern with 91.9% accuracy 
[54]. Then in 2011, Gross et al used NBI images to differentiate polyps 
< 10 mm with 95% sensitivity, 90.3% specificity, and 93.1% accuracy 
[56]. Initial studies done by Takemura et al. with still images was able 
to achieve a sensitivity, specificity, and accuracy of 98%, 98%, and 
98% for neoplastic lesions, respectively [57]. A later study with 41 
patients and 118 colorectal lesions by the same group were done in 
real time, which yielded a sensitivity, specificity, and accuracy of 93%, 
93%, and 93.2% [58]. While the sample size was relatively small, this 
proved important because it met the criterion for the “diagnosis and 
leave” strategy, as well showing the effectiveness of CADx in real-time 
compared to human diagnostics.
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Magnifying Narrow Band Imaging (NBI) Blue light (415 nm) and green light (540 nm) are transmitted. Typically, an option with a white-light 
endoscope with ability to change to NBI. Can magnify 80x and identify vascular pattern of GI mucosa.

Endocytoscopy Magnification of mucosa to 50 μm in depth

Laser-induced fluorescence spectroscopy Low power laser used for high-magnification and high-resolution imaging

Auto-florescent Endoscopy Detection of tissue based on natural fluorescence after excited by light

White light Endoscopy Standard definition or high-definition images taken from endoscope when shining standard endoscope 
light

Table 2: Devices used in AI PolypDetection.

Figure 4: Artificial Intelligence in Polyp Classification from NBI (adapted from Alagappan et al. [69]).
A: NBI image from endoscopy; B: Green light represents vessels of polyp; C: System diagnosis of neoplastic or non-neoplastic; D: 
Probability of diagnosis
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and improving efficacy. Additionally, with the growing demand for 
precision medicine from patients and physicians, AI may help pave 
the way. Although much of the research being done aims for high 
sensitivity and specificity for polyp detection and characterization, 
high sensitivity may only be needed for improved detection.

Additional research must be done on live colonoscopies and also 
into physician satisfaction, cost effectiveness, and clinical outcomes 
related to the mass adoption of the technology. Some outcomes to 
be studied include adenoma detection rate and withdrawal times. 
Additionally, gastroenterologists must pay attention to AI application 
in other fields of medicine and observe the pitfalls and successes. 
Finally, there must be a clear path to FDA approval for future device 
acceptance.

Conclusion

The field of gastroenterology has made incredible leaps in terms 
of integrating AI into the field. In particular, developments of AI 
in polyp detection and classification have shown promising results. 
The strengths of AI include the ability to process and analyze large 
amounts of data much faster than humans, though some barriers to 
more research is limited by the amount of publicly available annotated 
data for AI processing. Current directions of the field include 
development of more sophisticated CNNs and real-time prospective 
and randomized controlled trials in vivo studies. These steps will not 
only optimize AI techniques, but also continue to show the utility in 
the clinical setting. Although computers may be more accurate and 
precise in diagnosis and detection of disease, physicians will still be 
needed to synthesize the information and communicate it with the 
patient. For all these reasons, AI promises to accompany physicians in 
providing better care to patients.
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With the increasing number of physician burnout, musculoskeletal 
injury from endoscopy, and shortage of human resources, AI may 
help overcome many of the negative factors that affect diagnostic 
screening by improving lesion detection, reducing medical error,
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