Profile
International Journal of Metallurgical & Materials Engineering Volume 3 (2017), Article ID 3:IJMME-138, 5 pages
http://dx.doi.org/10.15344/2455-2372/2017/138
Research Article
Novel Graphene-Silicon Heterostructure Device with a Gate-Controlled Schottky Barrier

Pengfei Zhang, Beibei Guo and Dongyun Wan*

School of Materials Science and Engineering, Shanghai University, Shanghai, China
Dr. Dongyun Wan, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China; E-mail: wandy@mail.sic.ac.cn
22 November 2017; 27 December 2017; 29 December 2017
Zhang P, Guo B, Wan D (2017) Reactive Oxygen Species in Novel Hydrometallurgical Processes. Int J Metall Mater Eng 3: 138. doi: https://doi.org/10.15344/2455-2372/2017/138
The work was supported by the jointed foundation from National Natural Science Foundation of China and the big science facility of Chinese Academy of Sciences (No. U1632108).

References

  1. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK, et al. (2009) The electronic properties of graphene. Reviews of Modern. Physics 81: 109-162. View
  2. Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, et al. (2008) Fine structure constant defines visual transparency of graphene. Science 320: 1308. View
  3. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321: 385- 388. View
  4. Geim AK, Novoselov KS (2007) The rise of graphene. Nature materials 6: 183-191. View
  5. Novoselov KS, Fal'ko VI, Colombo L, Gellert PR, Schwab MG, et al. (2012) A roadmap for graphene. Nature 490: 192-200. View
  6. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS, et al. (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature nanotechnology 3: 206-209. View
  7. Zhu Y, Sun Z, Yan Z, Jin Z, Tour JM, et al. (2011) Rational design of hybrid graphene films for high-performance transparent electrodes. ACS nano 5: 6472-6479. View
  8. Chang H, Wang G, Yang A, Tao X, Liu X, et al. (2010) A Transparent, Flexible, Low-Temperature, and Solution-Processible Graphene Composite Electrode. Advanced Functional Materials 20: 2893-2902. View
  9. Wassei JK, Kaner RB (2010) Graphene, a promising transparent conductor. Materials Today13: 52-59. View
  10. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, et al. (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457: 706-710. View
  11. Wang X, Zhi L, Müllen K (2008) Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano letters 8: 323-327. View
  12. Hsu CL, Lin CT, Huang JH, Chu CW, Wei KH, et al. (2012) Layer-by-layer graphene/TCNQ stacked films as conducting anodes for organic solar cells. ACS nano 6: 5031-5039. View
  13. Tung VC, Chen LM, Allen MJ, Wassei JK, Nelson K, et al. (2009) Lowtemperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano letters 9: 1949-1955. View
  14. Liu Z, Liu Q, Huang Y, Ma Y, Yin S, et al. (2008) Organic Photovoltaic Devices Based on a Novel Acceptor Material: Graphene. Advanced Materials 20: 3924-3930. View
  15. Chen CC, Aykol M, Chang CC, Levi AF, Cronin SB, et al. (2011) Graphenesilicon Schottky diodes. Nano letters 11: 1863-1867. View
  16. Feng T, Xie D, Lin Y, Zang Y, Ren T, et al. (2011) Graphene based Schottky junction solar cells on patterned silicon-pillar-array substrate. Applied Physics Letters 99: 233505. View
  17. Xie C, Lv P, Nie B, Jie J, Zhang X, et al. (2011) Monolayer graphene film/ silicon nanowire array Schottky junction solar cells. Applied Physics Letters 99: 133113. View
  18. Shi E, Li H, Yang L, Zhang L, Li Z, et al. (2013) Colloidal antireflection coating improves graphene-silicon solar cells. Nano letters 13: 1776-1781. View
  19. Zhou Y, Huang A, Li Y, Ji S, Gao Y, et al. (2013) Surface plasmon resonance induced excellent solar control for VO(2)@SiO(2) nanorodsbased thermochromic foils. Nanoscale 5: 9208-9213. View
  20. Gusynin VP, Sharapov SG, Carbotte JP (2007) Magneto-optical conductivity in graphene. Journal of Physics: Condensed Matter 19: 026222. View
  21. Yang X, Liu G, Rostami M, Balandin AA, Mohanram K, et al. (2011) Graphene Ambipolar Multiplier Phase Detector. IEEE Electron Device Letters 32: 1328-1330. View
  22. Tian JF, Jauregui LA, Lopez G, Cao H, Chen YP, et al. (2010) Ambipolar graphene field effect transistors by local metal side gates. Applied Physics Letters 96: 263110. View
  23. Herring PK, Hsu AL, Gabor NM, Shin YC, Kong J, et al. (2014) Photoresponse of an electrically tunable ambipolar graphene infrared thermocouple. Nano letters 14: 901-907. View
  24. Wang H, Hsu A, Wu J, Kong J, Palacios T, et al. (2010) Graphene-Based Ambipolar RF Mixers. IEEE Electron Device Letters 31: 906-908. View
  25. Xia F, Perebeinos V, Lin YM, Wu Y, Avouris P, et al. (2011) The origins and limits of metal-graphene junction resistance. Nature nanotechnology 6: 179-184. View
  26. Yu YJ, Zhao Y, Ryu S, Brus LE, Kim KS, et al. (2009) Tuning the graphene work function by electric field effect. Nano letters 9: 3430-3434. View
  27. Han W, Nezich D, Jing K, Palacios T (2009) Graphene Frequency Multipliers. IEEE Electron Device Letters 30: 547-549. View
  28. Myung S, Park J, Lee H, Kim KS, Hong S, et al. (2010) Ambipolar memory devices based on reduced graphene oxide and nanoparticles. Adv Mater 22: 2045-2049. View
  29. Lemme MC, Echtermeyer TJ, Baus M, Kurz HA (2007) Graphene Field- Effect Device. IEEE Electron Device Letters 28: 282-284. View
  30. Martinez A, Fuse K, Yamashita S (2011) Mechanical exfoliation of graphene for the passive mode-locking of fiber lasers. Applied Physics Letters 99: 121107. View
  31. Wang X, Li D, Zhang Q, Zou L, Wang F, et al. (2015) Study on the graphene/ silicon Schottky diodes by transferring graphene transparent electrodes on silicon. Thin Solid Films 592: 281-286. View
  32. An X, Liu F, Jung YJ, Kar S (2013) Tunable graphene-silicon heterojunctions for ultrasensitive photodetection. Nano letters 13: 909-916. View
  33. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA, et al. (2013) Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS nano 7: 2898-2926. View
  34. Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chemical reviews 113: 3766-3798. View