Profile
International Journal of Metallurgical & Materials Engineering Volume 1 (2015), Article ID 1:IJMME-107, 4 pages
http://dx.doi.org/10.15344/2455-2372/2015/107
Research Article
Developing New Type of High Temperature Alloys–High Entropy Superalloys

A.C Yeh1*, T. K. Tsao1, Y.J.Chang1, K.C. Chang1, J.W. Yeh1, M.S. Chiou2, S.R. Jian2, C.M. Kuo3, W.R. Wang4 and H. Murakami5

1Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan R.O.C.
2Department of Materials Science and Engineering, I-Shou University, Kaohsiung, 84001, Taiwan R.O.C.
3Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung, 84001, Taiwan R.O.C.
4Clean Energy and Eco-technology Center, Industrial Technology Research Institute, Tainan, 70955, Taiwan R.O.C.
5National Institute for Materials Science, Sengen 1-2-1, Tsukuba, Ibaraki, 305-0047, Japan
Prof. An-Chou Yeh, Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan R.O.C.; E-mail: yehac@mx.nthu.edu.tw
25 March 2015; 23 June 2015; 25 June 2015
Yeh AC, Tsao TK, Chang YJ, Chang KC, Yeh JW, et al. (2015) Developing New Type of High Temperature Alloys–High Entropy Superalloys. Int J Metall Mater Eng 1: 107. doi: http://dx.doi.org/10.15344/2455-2372/2015/107
This work was supported by the Ministry of Science and Technology, Taiwan (R.O.C.), project grant number: 103- 2221-E-214 -035, 103-2218-E-007 -019.

References

  1. Sims CT, Stoloff NS, Hagel WC (1987) Superalloys II, Wiley, New Yrok.
  2. Reed RC (2006) The superalloys: fundamentals and applications, Cambridge University Press. View
  3. Reed RC, Tao T, Warnken N (2009) Alloys-By-Design: Application to nickelbased single crystal superalloys. Acta Materialia 57: 5898-5913. View
  4. Walston WS, Cetel A, MacKay R, O’Hara KS, Duhl D (2004) Joint Development of a Fourth Generation Single Crystal Superalloy. Superalloys (TMS,2004), 15-24. View
  5. Zhang JX, Murakumo T, Koizumi Y, Kobayashi T, Harada H (2002) Interfacial dislocation networks strengthening a fourth-generation singlecrystal TMS138 superalloy. Metallurgical and Materials Transactions A 33: 3741-3746. View
  6. Frasier DJ, Whetstone JR, Harris K, Erickson GL, Schwer RE (1990) Process and alloy optimaization for CMSX-4 supper ally single crystal, in cost 501/505 Conference High Temperature Materials for Power Engineering1990, (eds) Bachelet et al., Pub. Kluwer, Dordrecht(Netherlands), 1281-1300.
  7. Reed RC, Yeh AC, Tin S, Babu SS, Miller MK (2004) Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scripta Materialia 51: 327-331. View
  8. Yeh AC, Tin S (2005) Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys. Scripta Materialia 52: 519-524. View
  9. Yeh AC, Tin S (2006) Effects of Ru on the high-temperature phase stability of Ni-base single-crystal superalloys. Metallurgical and Materials Transactions A 37: 2621-2631. View
  10. Yeh AC, Sato A, Kobayashi T, Harada H (2008) On the creep and phase stability of advanced Ni-base single crystal superalloys. Materials Science and Engineering: A 490: 445-451. View
  11. Kawagishi K, Sato A, Harada H, Yeh AC, Koizumi Y, et al. (2009) Oxidation resistant Ru containing Ni base single crystal superalloys. Materials Science and Technology. 25: 271-275. View
  12. Kawagishi K, Yeh AC, Yokokawa T, Kobayashi T, Koizumi Y, et al. (2012) “Development of oxidation-resistant high-strength superalloy; towards 6th generation single crystal superalloys tms-238” Superalloys 2012: The 12th International Symposium on Superalloy Proceedings of Superalloys 2012: 189-195.
  13. Hobbs RA, Tin S, Rae CMF (2005) A castability model based on elemental solid-liquid partitioning in advanced nickel-base single-crystal superalloys. Metallurgical and Materials Transactions A 36: 2761-2773. View
  14. Yeh JW, Chen SK, Lin SJ, Gan JY, Chin TS, et al. (2004) Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials 6: 299-303. View
  15. Yeh JW (2006) Recent progress in high-entropy alloys. Annales De Chimie- Science Des Materiaux 31: 633-648. View
  16. Yeh AC, Chang YJ, Tsai CW, Wang YC, Yeh JW, et al. (2014) On the Solidification and Phase Stability of a Co-Cr-Fe-Ni-Ti High-Entropy Alloy. Metallurgical and Materials Transactions A 45: 184-190. View
  17. Reed RC, Yeh AC, Tin S, Babu SS, Miller MK (2004) Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography. Scripta Materialia 51: 327-331. View
  18. A.C. Yeh, C.M.F. Rae, S. Tin, “High temperature creep of Ru-bearing Ni-base single crystal superalloys”, the Tenth International Symposium on Superalloys (Superalloys 2004), 19-23 September 2004, Champion, Pennsylvania, USA, p677-685.
  19. Yeh AC, Yang KC, Yeh JW, Kuo CM (2014) Developing an advanced Sibearing DS Ni-base superalloy. Journal of Alloys and Compounds 585: 614-621. View
  20. Webster GA, Sullivan CP (1967) Some effect of temperature cycle on the creep behavior of a Nickel-Base alloy. Journal of the Institute of Metals 95: 138-142.
  21. Tien JK, Gamble RP (1972) Effects of stress coarsening on coherent particle strengthening. Metallurgical Transactions 3: 2157-2162. View
  22. Mackay RA, Ebert LJ (1983) The development of directional coarsening of the γ′ precipitate in superalloy single crystals. Scripta Metallurgica 17: 1217-1222. View
  23. Ichitsubo T, Koumoto D, Hirao M, Tanaka K, Osawa M, et al. (2003) Rafting mechanism for Ni-base superalloy under external stress: elastic or elastic– plastic phenomena?. Acta Materialia 51: 4033-4044. View
  24. Serin K, Gobenli G, Eggeler G (2004) On the influence of stress state, stress level and temperature on γ-channel widening in the single crystal superalloy CMSX-4. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing 387: 133-137. View
  25. Nabarro FRN, Cress CM, Kotschy P (1996) The thermodynamic driving force for rafting in superalloys. Acta Materialia 44: 3189-3198. View
  26. Nabarro FRN (1996) Rafting in superalloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science 27: 513-530. View
  27. Laberge CA, Fratzl P, Lebowitz JL (1997) Microscopic model for directional coarsening of precipitates in alloys under external load, Acta Materialia 45: 3949-3962. View
  28. Svoboda J, Lukas P (1996) Modelling of kinetics of directional coarsening in Ni-superalloys. Acta Materialia 44: 2557-2565. View
  29. Tien JK, Copley SM (1971) The effect of orientation and sense of applied uniaxial stress on the morphology of coherent gamma prime precipitates in stress annealed nickel-base superalloy crystals. Metallurgical Transactions 2: 543-553. View
  30. Zhang JX, Wang JC, Harada H, Koizumi Y (2005) The effect of lattice misfit on the dislocation motion in superalloys during high-temperature low-stress creep. Acta Materialia 53: 4623-4633. View
  31. Zhang JX, Murakumo T, Harada H, Koizumi Y (2003) Dependence of creep strength on the interfacial dislocations in a fourth generation SC superalloy TMS-138. Scripta Materialia 48: 287-293. View