Profile
International Journal of Metallurgical & Materials Engineering Volume 1 (2015), Article ID 1:IJMME-101, 11 pages
http://dx.doi.org/10.15344/2455-2372/2015/101
Research Article
How do Impurity Inclusions Influence the Mechanical Properties of Multicrystalline Silicon?

T. Orellana1,2,*, E. M. Tejado3, C. Funke2, W. Fütterer2, S. Riepe1, H. J. Moller2, J. Y. Pastor3

1Fraunhofer Institute for Solar Energy Systems, Heidenhofstrasse 2, 79110 Freiburg, Germany
2Institute for Experimental Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, D-09599 Freiberg, Germany
3Departameto de Ciencia de Materiales-CISDEM, E.T.S.I. de Caminos, Canales y Puertos Universidad Politécnica de Madrid-CSICC/ Profesor Aranguren s.n. 28040 Madrid, Spain
Dr. Teresa Orellana-perez, Institute for Experimental Physics, TU Bergakademie Freiberg, Leipziger Strasse 23, D-09599 Freiberg, Germany; E-mail: teresa.orellana-perez@physik.tu-freiberg.de
19 December 2014; 03 February 2015; 05 February 2015
Orellana T, Tejado EM, Funke C, Fütterer W, Riepe S, et al. (2015) How do Impurity Inclusions Influence the Mechanical Properties of Multicrystalline Silicon?. Int J Metall Mater Eng 1: 101. doi: http://dx.doi.org/10.15344/2455-2372/2015/101
This work was supported by the Fraunhofer Society in the frame of the project Si-Beacon, the Ministerio de Economía y Competitividad, MAT2009-13979-C03, and the Comunidad de Madrid, S-S2009/ MAT-1585-ESTRUMAT2.

References

  1. Schmich E, Schillinger N, Reber S (2007) Silicon CVD Deposition for Low- Cost Applications in Photovoltaics. Surface and Coatings Technology 201: 9325-9329. View
  2. Orellana Pérez T, Funke C, Fütterer W, Riepe S, Möller HJ, et al. (2011) Impact of Impurities on the Mechanical Strength of Multicrystalline Silicon," 26th European Photovoltaic Solar Energy Conference pp.1864-1870. View
  3. Orellana T, Tejado EM, Funke C, Riepe S, Pastor JY (2014) Influence of high aluminium content on the mechanical properties of directionally solidified multicrystalline silicon. Journal of Materials Science 49: 4905- 4918. View
  4. Green DJ (1998) An Introduction to the Mechanical Properties of Cermiacs, Cambridge University Press. View
  5. Riepe S, Schumann M, Schmich E, Janz S, Eyer A, et al. (2008) Silicon Material and Technology Evaluation Center (SIMTEC) at Fraunhofer ISE - Achievements and Visions," 23rd European Photovoltaic Solar Energy Conference, pp.1264-1269. View
  6. Funke C, Wolf S, Stoyan D (2009) Modeling the Tensile Strength and Crack Length of Wire-Sawn Silicon Wafers. J Sol Energy Eng 131. View
  7. American Society for Testing and Materials (ASTM), "ASTM C1499 - 08 Standard Test Method for Monotonic Equibiaxial Flexural Strength of Advanced Ceramics at Ambient Temperature," 2008.
  8. American Society for Testing and Materials (ASTM), ASTM C 1161-02 Standard Test Method for Flexural Strength of Advanced Ceramics at Ambient Temperature, 2003.
  9. American Society for Testing and Materials (ASTM), "ASTM C1239-07 Standard Practice for Reporting Uniaxial Strength Data and Estimating Weibull Distribution Parameters for Advanced Ceramics," 2007.
  10. Guinea GV, Pastor JY, Planas J, Elices M (1998) Stress Intensity Factor, Compliance and CMOD for a General Three-Point-Bend Beam. International Journal of Fracture, Bd. 89: 103-116. View
  11. American Society for Testing and Materials (ASTM),„ASTM E 1876-09 Standard Test Method for Dynamic Young´s Modulus, Shear Modulus, and Poisson´s Ratio by Impulse Excitation of Vibration“.
  12. Spinner S, Reichard TW, Tefft WE (1960) A Comparison of Experimental and Theoretical Relations between Young´s Modulus and the Flexural and Longitudinal Resonance Frequencies of Uniform Bars. Journal of Research of the National Bureau of Standards-A. Physics and Chemistry 64: 147- 155. View
  13. Wachtman JB, Cannon WR, Matthewson MJ (2009) Mechanical Properties of Ceramics, John Wiley and Sons.
  14. Selsing J (1961) Internal Stresses in Ceramics. Journal of the American Ceramic Society 44: 419. View
  15. Weyl D (1959) Uber den Einfluß innerer Spannungen auf das Gefüge und die mechanische Festigkeit des Porzellans,“ Berichte der Deutschen Keramischen Gesellschaft, Bd. 36: 319-324.
  16. Hull R (1999) Properties of Crystalline Silicon, London: INSPEC, The Institution of Electrical Engineers.
  17. Davidge RW, Green TJ (1968) The Strength of Two Phase Ceramic/Glass Materials. Journal of Materials Science 3: 629-634. View
  18. Ito YM, Rosenblatt M, Cheng LY, Lange FF, Evans AG (1981) Cracking in Particulate Composites due to Thermalmechanical stress. International Journal of Fracture 17: 483-491. View
  19. Evans G (1974) The Role of Inclusions in the Fracture of Ceramic Materials. Journal of Materials Science 9: 1145-1152. View
  20. Green DJ (1981) Stress-Induced Microcracking at Second-Phase Inclusions. Journal of the American Ceramic Society 64: 138-141. View
  21. Goodier JN (1933) Concentration of Stress Around Spherical and Cylindrical Inclusions and Flaws. Journal of Applied Mechanics 55: 39-44.
  22. Khaund K, Krstic VD, Nicholson PS (1977) Influence of Elastic and Thermal Mismatch on the Local Crack-driving Force in Brittle Composites. Journal of Materials Science 12: 2269-2273. View
  23. Li R, Chudnovsky A (1993) Variation of the Energy Release Rate as a Crack Approches and Passes Through an Elastic Inclusion. International Journal of Fracture 59: R69-R74. View
  24. Wei GC, Becher PF (1984) Improvements in Mechanical Properties in SiC by the Addition of TiC Particles. Journal of the American Ceramic Society 67: 571-574. View
  25. Rose LRF (1986) Effective Fracture Toughness of Microcracked Materials. Journal of the American Ceramic Society 69: 212-214. View
  26. Hall JJ (1976) Electronic Effects in the Elastic Constants of n-Type Silicon. Phys Rev 161: 756-761. View
  27. Hashin Z, Shtrikman S (1963) A Variational Approach to the Theory of the Elastic Behavior of Multiphase Materials. Journal of the Mechanics and Physics of Solids 11: 127-140. View
  28. Budiansky B, O'Connoell RJ (1976) Elastic Moduli of a Cracked Solid. International Journal of Solids and Structures 12: 81-97. View
  29. Moller HJ, Long L, Werner M, Yang D (1999) Oxygen and Carbon Precipitation in Multicrystalline Solar Silicon. Physica Status Solidi (A) 171: 175-189. View
  30. Shigeru A (1993) Morphology of oxide precipitates in silicon crystals. Mater Trans 34: 746-752. View
  31. Xi Z, Yang D, Chen J, Xu J, Yujie J, et al. (2004) Influence of Copper Precipitation on Oxygen Precipitation in Czochralski Silicon. Semiconductor Science and Technology 19: 299-305. View
  32. Okada Y, Tokumaru Y (1984) Precise Determination of Lattice Parameter and Thermal Expansion Coefficient of Silicon between 300 and 1500 K. J Appl Phys 56: 314-320. View
  33. Li Z, Bradt RC (1986) Thermal Expansion of the Cubic (3C) Polytype of SiC. Journal of Materials Science 21: 4366-4368. View
  34. Sakaguchi S, Murayama N, Kodama Y, Wakai F (1991) The Poisson´s Ratio of Engineering Ceramics at Elevated Temperature. Journal of Materials Science Letters 10: 282-284. View
  35. Ashby MF (2004) Materials Selection in Mechanical Design, 3rd ed., Butterworth Heinemann. View
  36. Sinclair JE, Lawn BR (1972) An Atomistic Study of Cracks in Diamond- Structure Crystals,” Proceedings of the Royal Society of London, A: Mathematical, Physical and Engineering Sciences 329: 83-103. View
  37. Schonfelder S, Sampson A, Ganapati V, Kopge R, Bagdahn J (2009) Quantitative Stress Measurements of Bulk Microdefects in Multicrystalline Silicon,” in 24th EUPVSEC, 2009. View
  38. MHamdi M, Gouttebroze S (2009) Analysis of the Residual Stress Field Associated with Particles in Multi-crystalline Silicon,” in 24th EUPVSEC. View