Profile
International Journal of Clinical Research & Trials Volume 3 (2018), Article ID 3:IJCRT-130, 04 pages
https://doi.org/10.15344/2456-8007/2018/130
Commentary
A Cortical Substrate for Parkinsonism: A Personal Journey

Gordon W. Arbuthnott* and Marianela Garcia Munoz

Okinawa Institute of Science and Technology Graduate University, Kunigami-Gun, 904-0495, Japan
Prof. Gordon W. Arbuthnott, Okinawa Institute of Science and Technology Graduate University, Kunigami, Okinawa 904-0495, Japan; E-mail: gordon@oist.jp
18 December 2018; 27 December 2018; 29 December 2018
Arbuthnott GW, Garcia Munoz M (2018) A Cortical Substrate for Parkinsonism: A Personal Journey. Int J Clin Res Trials 3: 130. doi: https://doi.org/10.15344/2456-8007/2018/130

References

  1. Crossman AR, Sambrook MA, Gergies SW, Slater P (1977) The neurological basis of motor asymmetry following unilateral 6-hydroxydopamine brain lesions in the rat: the effect of motor decortication. J neurol sciences 34: 407-414. [CrossRef] [Google Scholar] [PubMed]
  2. Arbuthnott GW, Wright AK (1982) Some non-fluorescent connections of the nigro-neostriatal dopamine neurones. Brain research bulletin 9: 367-368. [CrossRef] [Google Scholar] [PubMed]
  3. Arbuthnott GW, MacLeod NK, Maxwell DJ, Wright AK (1990) Distribution and synaptic contacts of the cortical terminals arising from neurons in the rat ventromedial thalamic nucleus. Neuroscience 38: 47-60. [CrossRef] [Google Scholar] [PubMed]
  4. Kemp JM, Powell TP (1971) The termination of fibres from the cerebral cortex and thalamus upon dendritic spines in the caudate nucleus: a study with the Golgi method. Philos Trans R Soc Lond B Biol Sci 262: 429-439. [CrossRef] [Google Scholar] [PubMed]
  5. Ingham CA, Hood SH, Arbuthnott GW (1989) Spine density on neostriatal neurones changes with 6-hydroxydopamine lesions and with age. Brain Res 503: 334-338. [CrossRef] [Google Scholar] [PubMed]
  6. Ingham CA, Hood SH, van Maldegem B, Weenink A, Arbuthnott GW, et al. (1993) Morphological changes in the rat neostriatum after unilateral 6-hydroxydopamine injections into the nigrostriatal pathway. Experimental brain research. Experimentelle Hirnforschung 93: 17-27. [CrossRef] [Google Scholar] [PubMed]
  7. Ingham CA, Hood SH, Taggart P, Arbuthnott GW (1998) Plasticity of synapses in the rat neostriatum after unilateral lesion of the nigrostriatal dopaminergic pathway. J Neurosci 18: 4732-4743. [CrossRef] [Google Scholar] [PubMed]
  8. Day M, Wang Z, Ding J, An X, Ingham CA, et al. (2006) Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 9: 251-259. [CrossRef] [Google Scholar] [PubMed]
  9. Suarez LM, Solis O, Aguado C, Lujan R, Moratalla R, et al. (2016) L-DOPA Oppositely Regulates Synaptic Strength and Spine Morphology in D1 and D2 Striatal Projection Neurons in Dyskinesia. Cereb Cortex 26: 4253-4264. [CrossRef] [Google Scholar] [PubMed]
  10. Stephens B, Mueller AJ, Shering AF, Hood SH, Taggart P, et al. (2005) Evidence of a breakdown of corticostriatal connections in Parkinson's disease. Neuroscience 132: 741-754. [CrossRef] [Google Scholar] [PubMed]
  11. Fuxe K, Agnati LF, Harfstrand A, Cintra A, Aronsson M, et al. (1988) Principles for the hormone regulation of wiring transmission and volume transmission in the central nervous system. Springer Verlag. [Google Scholar]
  12. Arbuthnott GW, Wickens J (2007) Space, time and dopamine. Trends Neurosci 30: 62-69. [CrossRef] [Google Scholar] [PubMed]
  13. Wickens JR, Begg AJ, Arbuthnott GW (1996) Dopamine reverses the depression of rat corticostriatal synapses which normally follows high-frequency stimulation of cortex in vitro. Neuroscience 70: 1-5. [CrossRef] [Google Scholar] [PubMed]
  14. Brown JR, Arbuthnott GW (1983) The electrophysiology of dopamine (D2) receptors: a study of the actions of dopamine on corticostriatal transmission. Neuroscience, 10: 349-355. [CrossRef] [Google Scholar] [PubMed]
  15. Barbeito L, Girault JA, Godeheu G, Pittaluga A, Glowinski J, et al. (1989) Activation of the bilateral corticostriatal glutamatergic projection by infusion of GABA into thalamic motor nuclei in the cat: an in vivo release study. Neuroscience 28: 365-374. [CrossRef] [Google Scholar] [PubMed]
  16. Garcia-Munoz M, Young SJ, Groves PM (1991) Terminal excitability of the corticostriatal pathway. I. Regulation by dopamine receptor stimulation. Brain Res 551: 195-206. [CrossRef] [Google Scholar] [PubMed]
  17. Calabresi P, Pisani A, Mercuri NB, Bernardi G (1996) The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci 19: 19-24. [CrossRef] [Google Scholar] [PubMed]
  18. Arbuthnott GW, Li S, Jaeger D (2006) Cortical effects of subthalamic nucleus stimulation: An intracellular study in anesthetized rats. 5th Forum of European Neuroscience. Vienna, Austria.
  19. Groiss SJ, Wojtecki L, Sudmeyer M, Schnitzler A (2009) Deep brain stimulation in Parkinson's disease. Ther Adv Neurol Disord 2: 20-28. [CrossRef] [PubMed]
  20. Li S, Arbuthnott GW, Jutras MJ, Goldberg JA, Jaeger D, et al. (2007) Resonant antidromic cortical circuit activation as a consequence of high-frequency subthalamic deep-brain stimulation. J Neurophysiol 98: 3525-3537. [CrossRef] [Google Scholar] [PubMed]
  21. Ashby P, Kim YJ, Kumar R, Lang AE, Lozano AM, et al. (1999) Neurophysiological effects of stimulation through electrodes in the human subthalamic nucleus. Brain 122: 1919-1931. [CrossRef] [Google Scholar] [PubMed]
  22. Ashby P, Paradiso G, Saint-Cyr JA, Chen R, Lang AE, et al. (2001) Potentials recorded at the scalp by stimulation near the human subthalamic nucleus. Clin Neurophysiol 112: 431-437. [CrossRef] [Google Scholar] [PubMed]
  23. Hanajima R, Ashby P, Lozano AM, Lang AE, Chen R, et al. (2004) Single pulse stimulation of the human subthalamic nucleus facilitates the motor cortex at short intervals. J Neurophysiol 92: 1937-1943. [CrossRef] [Google Scholar] [PubMed]
  24. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K, et al. (2009) Optical deconstruction of parkinsonian neural circuitry. Science 324: 354-359. [CrossRef] [Google Scholar] [PubMed]
  25. Sanders TH, Jaeger D (2016) Optogenetic stimulation of cortico-subthalamic projections is sufficient to ameliorate bradykinesia in 6-ohda lesioned mice. Neurobiol Dis 95: 225-237. [CrossRef] [Google Scholar] [PubMed]
  26. Nambu A, Takada M, Inase M, Tokuno H (1996) Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16: 2671-2683. [Google Scholar] [PubMed]
  27. Brunenberg EJ, Moeskops P, Backes WH, Pollo C, Cammoun L, et al. (2012) Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PloS one 7: e39061. [CrossRef] [Google Scholar] [PubMed]
  28. Arbuthnott G, Dejean C, Hyland B (2009) Antidromic cortical activity as the source of therapeutic actions of deep brain stimulation? In Tseng, K.Y. (ed) Cortico-subcortical dynamic in Parkinson’s disease. Humana Press, New York. [Google Scholar]
  29. Dejean C, Hyland B, Arbuthnott G (2009) Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia. Cereb Cortex 19: 1055-1063. [CrossRef] [Google Scholar] [PubMed]
  30. Li Q, Ke Y, Chan DC, Qian ZM, Yung KK, et al. (2012) Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76: 1030-1041. [CrossRef] [Google Scholar] [PubMed]
  31. Kang G, Lowery MM (2009) A model of pathological oscillations in the basal ganglia and deep brain stimulation in Parkinson's disease. Conf Proc IEEE Eng Med Biol Soc 2009: 3909-3912. [CrossRef] [Google Scholar] [PubMed]
  32. Kang G, Lowery MM (2013) Interaction of oscillations, and their suppression via deep brain stimulation, in a model of the cortico-basal ganglia network. IEEE Trans Neural Syst Rehabil Eng 21: 244-253. [CrossRef] [Google Scholar] [PubMed]
  33. Arbuthnott GW, Garcia-Munoz M (2017) Are the Symptoms of Parkinsonism Cortical in Origin? Comput Struct Biotechnol J 15: 21-25. [CrossRef] [Google Scholar] [PubMed]
  34. Kelley R, Flouty O, Emmons EB, Kim Y, Kingyon J, et al. (2018) A human prefrontal-subthalamic circuit for cognitive control. Brain 141: 205-216. [CrossRef] [Google Scholar] [PubMed]
  35. Miocinovic S, de Hemptinne C, Chen W, Isbaine F, Willie JT, et al. (2018) Cortical Potentials Evoked by Subthalamic Stimulation Demonstrate a Short Latency Hyperdirect Pathway in Humans. J Neurosci 38: 9129-9141. [CrossRef] [Google Scholar] [PubMed]
  36. Muthuraman M, Deuschl G, Koirala N, Riedel C, Volkmann J, et al. (2017) Effects of DBS in parkinsonian patients depend on the structural integrity of frontal cortex. Sci Rep 7: 43571. [CrossRef] [Google Scholar] [PubMed]
  37. Trenado C, Elben S, Friggemann L, Groiss SJ, Vesper J, et al. (2018) Intraoperative Localization of the Subthalamic Nucleus Using Long-Latency Somatosensory Evoked Potentials. Neuromodulation 21: 582-587. [CrossRef] [Google Scholar] [PubMed]
  38. van Dijk KJ, Verhagen R, Bour LJ, Heida C, Veltink PH, et al. (2018) Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead. Neuromodulation 21: 553-561. [CrossRef] [Google Scholar] [PubMed]
  39. Bot M, Schuurman PR, Odekerken VJJ, Verhagen R, Contarino FM, et al. (2018) Deep brain stimulation for Parkinson's disease: defining the optimal location within the subthalamic nucleus. J Neurol Neurosurg Psychiatry 89: 493-498. [CrossRef] [Google Scholar] [PubMed]
  40. Stefani A, Cerroni R, Mazzone P, Liguori C, Di Giovanni G, et al. (2018) Mechanisms of action underlying the efficacy of deep brain stimulation of the subthalamic nucleus in Parkinson's disease: central role of disease severity. Eur J Neurosci. [CrossRef] [Google Scholar] [PubMed]
  41. Xu C, Zhuang P, Hallett M, Zhang Y, Li J, et al. (2018) Parkinson's Disease Motor Subtypes Show Different Responses to Long-Term Subthalamic Nucleus Stimulation. Frontiers in human neuroscience 12: 365. [CrossRef] [Google Scholar] [PubMed]
  42. Hirschmann J, Ozkurt TE, Butz M, Homburger M, Elben S, et al. (2011) Distinct oscillatory STN-cortical loops revealed by simultaneous MEG and local field potential recordings in patients with Parkinson's disease. NeuroImage 55: 1159-1168. [CrossRef] [Google Scholar] [PubMed]
  43. Steiner LA, Neumann WJ, Staub-Bartelt F, Herz DM, Tan H, et al. (2017) Subthalamic beta dynamics mirror Parkinsonian bradykinesia months after neurostimulator implantation. Mov Disord 32: 1183-1190. [CrossRef] [Google Scholar] [PubMed]
  44. Fischer P, Chen CC, Chang YJ, Yeh CH, Pogosyan A, et al. (2018) Alternating Modulation of Subthalamic Nucleus Beta Oscillations during Stepping. J Neurosci 38: 5111-5121. [CrossRef] [Google Scholar] [PubMed]
  45. Zavala B, Jang A, Trotta M, Lungu CI, Brown P, et al. (2018) Cognitive control involves theta power within trials and beta power across trials in the prefrontal-subthalamic network. Brain 141: 3361-3376. [CrossRef] [Google Scholar] [PubMed]
  46. Torrecillos F, Tinkhauser G, Fischer P, Green AL, Aziz TZ, et al. (2018) Modulation of Beta Bursts in the Subthalamic Nucleus Predicts Motor Performance. J Neurosci 38: 8905-8917. [CrossRef] [Google Scholar] [PubMed]
  47. Wang YY, Wang Y, Jiang HF, Liu JH, Jia J, et al. (2018) Impaired glutamatergic projection from the motor cortex to the subthalamic nucleus in 6-hydroxydopamine-lesioned hemi-parkinsonian rats. Exp Neurol 300: 135-148. [CrossRef] [Google Scholar] [PubMed]
  48. Zhuang QX, Li GY, Li B, Zhang CZ, Zhang XY, et al. (2018) Regularizing firing patterns of rat subthalamic neurons ameliorates parkinsonian motor deficits. J Clin Invest 128: 5413-5427. [CrossRef] [Google Scholar] [PubMed]
  49. Humphries MD, Obeso JA, Dreyer JK (2018) Insights inyo Parkinson’s disease from computational models of the basal ganglia. J Neurol Neurosurg Psychiatry 89: 1181-1188. [CrossRef] [Google Scholar] [PubMed]
  50. Aparicio-Juarez A, Duhne M, Lara-Gonzalez E, Avila-Cascajares F, Calderon V, et al. (2018) Cortical stimulation relieves parkinsonian pathological activity in vitro. Eur J Neurosci. [CrossRef] [Google Scholar] [PubMed]
  51. Jaidar O, Carrillo-Reid L, Hernandez A, Drucker-Colin R, Bargas J, et al. (2010) Dynamics of the Parkinsonian striatal microcircuit: entrainment into a dominant network state. J Neurosci 30: 11326-11336. [CrossRef] [Google Scholar] [PubMed]
  52. Jáidar OP, Carrillo-Reid LA, Lazarus M, Arbuthnott GW, Bargas J, et al. (2013) Disruption of both striatal output pathways underlies the behavioral response to dopamine depletion. Society for Neuroscience. San Diego, CA.
  53. Coude D, Parent A, Parent M (2018) Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates. Brain structure & function 223: 3959-3973. [CrossRef] [Google Scholar] [PubMed]
  54. Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A, et al. (2017) Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields. Cell 169: 1029-1041. [CrossRef] [Google Scholar] [PubMed]
  55. Bologna M, Guerra A, Paparella G, Giordo L, Alunni Fegatelli D, et al. (2018) Neurophysiological correlates of bradykinesia in Parkinson's disease. Brain 141: 2432-2444. [CrossRef] [Google Scholar] [PubMed]
  56. Burciu RG, Vaillancourt DE (2018) Imaging of Motor Cortex Physiology in Parkinson's Disease. Mov Disord 33: 1688-1699. [CrossRef] [Google Scholar] [PubMed]
  57. Sharott A, Gulberti A, Hamel W, Koppen JA, Munchau A, et al. (2018) Spatio-temporal dynamics of cortical drive to human subthalamic nucleus neurons in Parkinson's disease. Neurobiol Dis 112: 49-62. [CrossRef] [Google Scholar] [PubMed]
  58. Drouot X, Oshino S, Jarraya B, Besret L, Kishima H, et al. (2004) Functional recovery in a primate model of Parkinson's disease following motor cortex stimulation. Neuron 44: 769-778. [CrossRef] [Google Scholar] [PubMed]
  59. Senova S, Poupon C, Dauguet J, Stewart HJ, Dugue GP, et al. (2018) Optogenetic Tractography for anatomo-functional characterization of cortico-subcortical neural circuits in non-human primates. Sci Rep 8: 3362. [Google Scholar]
  60. Lavano A, Guzzi G, DE Rose M, Romano M, Della Torre A, et al. (2017) Minimally invasive motor cortex stimulation for Parkinson's disease. J Neurosurg Sci 61: 77-87. [CrossRef] [PubMed]
  61. Foffani G, Obeso JA (2018) A Cortical Pathogenic Theory of Parkinson’s Disease. Neuron 99: 1116-1127. [CrossRef] [Google Scholar] [PubMed]