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We first started thinking that cortex must be important in 
Parkinson’s disease when Alan R. Crossman did some experiments 
in rats, showing transient reductions in 6-hydroxydopamine-
induced spontaneous turning behavior after cortical lesions [1]. The 
experiments were elegant, but the lesions were large and did not 
block the turning, suggesting a kind of competition rather than a 
causal influence of cortex in the turning behavior. Similar conclusions 
plagued the many attempts to decide which of the brainstem 
pathways were the substrate of the turning behavior that followed the 
destruction of dopamine cells unilaterally, for review see, Arbuthnott 
and Wright [2]. However, as we finished a study of the anatomy of 
the basal ganglia [3] we concluded that the final output from the 
striatum came through the output nuclei of the basal ganglia: the 
globus pallidus pars interna (entopeduncular nucleus in rodents) and 
the substantia nigra pars reticulata, to a small nucleus in the ventral 
thalamus (ventromedial -VM- in the rat). Tracing the output from 
that nucleus brought us back to layer 1 of the cortex, close to where 
the search started in layer V [3]. This result had the basal ganglia 
appearing to be a loop ‘linking’ layer 5 to the superficial level of the 
cortex. Not a very likely scenario, nevertheless it did prepare us to 
look for an involvement of cortex in the consequences of dopamine 
destruction. Furthermore, the evidence was already there, the striatal 
spiny projection neurons (SPNs) that carried the first stage of the 
basal ganglia output, have cortical synapses on the spines [4]. When 
we studied the electron microscopic (EM) anatomy of the striatum 
without dopamine, there were obvious differences in those SPN spines 
[5-7]. There were fewer of them: we counted them stereologically 
in serial EM sections and found statistically fewer spines when the 
dopamine had been removed. As the theory about the differences 
in the two output pathways from the striatum developed, we started 
a long series of experiments where we identified the cells on which 
the spines were counted. By then, we were not alone and the final 
publication brought together the laboratories of Susan R. Sesack, 
Ariel Y. Deutch, Jim D. Surmeier, and ourselves [8]. It may be that 
we missed some dopamine D1 cells that were also denuded of spines 
[9], but the major effect was robust across all our studies. Therefore, 
damage to the dopamine input to the striatum, somehow spread to the 
cortical synapses on the spines of the SPNs. We did most of the work 
on rats but we also checked that the effect occurred in Parkinsonian 
patients. In fact, in post mortem human brain the effects were even 
more marked, with a 27% reduction in spine numbers compared with 
the 15% in the rats [10].

Our results had two consequences that had to be explored: firstly 
there were many more spines lost than originally had dopamine 
synapses on them: an idea that supported Fuxe and Agnati’s idea 
about volume transmission of dopamine signaling [11,12]. Secondly, 
such a denervation must have consequences for the cortical 
involvement in basal ganglia functions and indeed, dopamine 
functions. A series of experiments that were the beginning of a long-
term collaboration between myself and Jeff Wickens showed that 
in slices of the rat corticostriatal system we could convert the usual 
long-term depression that followed tetanic trains of cortical input, 
into long-term potentiation of the corticostriatal synapses [13]. This 
introduction did little except prepare us to look for the major action 
of dopamine to be expressed in the corticostriatal synapses, an idea 
that had been around for some time [14-17]. On the other hand, a 
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more convincing argument resulted from the discussion with Dieter 
Jaeger that saw me working with his team on the substrate of deep 
brain stimulation (DBS) [18]. The justification had many aspects, 
but as neurophysiologists we had struggled with the problem of what 
was stimulated by electrical stimuli. Exploring this problem and 
considering that effective DBS delivers 2.5-3.5 V of 60-90 µs pulses at 
high frequency (130-180Hz) [19], results from excitability ‘strength-
duration’ curves were interesting: a 50 µs pulse was very unlikely to 
stimulate anything that was not myelinated, therefore an action on 
the subthalamic nucleus (STN) cells themselves, was an improbable 
result and magnified since those cells could fire faster than the 130Hz. 
Therefore, we agreed that the likeliest substrate for stimulation 
was the presence of corticofugal fibres that run past the simulating 
electrodes. Our experiments showed that stimulation in the STN of 
rats, clearly induced antidromic potentials intracellularly recorded 
from layer V cells in the motor cortex. Furthermore careful analysis of 
the evoked potentials, showed that the activity was centered in layer 
V and that a possible mechanism of action might be the interruption 
of the synchronized oscillatory activity in cortex by the antidromic 
driving [20].

Two other pieces of evidence encouraged us, the first was the 
discovery of human data of antidromically generated slow waves in 
patients undergoing DBS, as recorded during surgery for the placement 
of electrodes [21-23], and the second a publication using not electrical 
but optogenetic manipulations of STN in 6-hydroxydopamine-
lesioned mice. Exciting or inhibiting STN neurons did not recover the 
animals, but high frequency stimulation of the cortical layer V cells 
in Thy1-cre rodents did release the animals from the results of the 
lesions, by relieving bradykinesia and increasing distance and speed 
of locomotion [24]. Optogenetic techniques have been improved 
but the result is still the same [25], except that the important part 
of the stimulation might be the ‘hyperdirect pathway’ from cortex 
directly to the STN [26-27], rather than the whole corticofugal axon 
bundle. In the meanwhile, we had shown with different collaborators 
that the threshold for recovery of motion in rats made akinetic by 
dopamine blockade, was the same as that of the cortical antidromic 
wave [28,29]. Finally, in freely moving animals, we could demonstrate
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cortical malfunction as the cause [61,49]. Such an initial influence of 
cortex on the symptoms has the obvious advantage of helping with 
the problem of the early stage of the disease in patients. The initial 
signs are nearly always localized and often to one side and to a few 
motor acts. It is hard to see how the diffusely projecting dopamine 
system could result in such localized dysfunction. On the other 
hand, cortical lesions certainly have well described local actions as 
for example seen following a stroke. There remains only the way to 
link the cortical malfunction with the dopamine system and Obeso’s 
surprising and thought provoking suggestion is that local overactivity 
in corticofugal pathways might pass on, or perhaps even initiate, 
synuclein overproduction in dopamine terminals that could be 
passed back to destroy the whole neuron. There are gaps for sure, but 
this explanation of a cortical source of the disease, rather than the 
symptoms appearing after the dopamine loss, seems reasonable and 
may even suggest new therapies.
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the synchronization of cortical neuronal firing in lesioned animals 
and the desynchronization that resulted from stimulation in STN, 
that also drove the cortical layer V neurons antidromically. The 
antidromic activity was stochastic because of on-going activity 
in freely moving animals, but high rates of antidromic driving, 
effectively desynchronized the electroencephalogram (EEG) [30]. 
Later there were some modelling studies that supported the likelihood 
that the antidromic activity was most effective in desynchronizing 
the EEG oscillations, [31,32]. We wrote a summary of this series of 
experiments for a conference in Dusseldorf in 2017, with the idea 
that not many people had heard of the results [33]. Since then, there 
have been several research papers about the ‘early response’ from 
the cortex to single pulses of DBS [34,35] with the extra, that even 
effective pallidal stimulation for Parkinson’s disease, also involved the 
same ‘fast response’ and there is even a suggestion that without frontal 
cortical invasion, DBS is less effective [36]. Not surprisingly the EEG 
field evoked responses have been used as a means of identifying the 
effect STN site for stimulation [37].

An interesting engineering development might make for a critical 
test of the idea, by placing a pair of stimulating electrodes that would 
make stimulation of the ‘internal capsule’ more difficult [38]. Clinical 
papers have investigated the best site in the STN for DBS [39] and two 
recent papers have suggested that its efficacy may separate Parkinson’s 
disease into categories by length and severity of the disease [40], or 
even of disease subtypes while off medication according to the Unified 
Parkinson’s disease Rating Scale [41]. There has been a resurgence of 
information about beta power modulation within high beta frequency 
bands [42-45], and in deep brain structures during DBS [46-48]. 
There have also been interesting ideas both in modelling papers 
reviewed recently by Humphries et al. [49] and recordings in vitro 
by Aparicio-Juarez et al. [50], where cortical stimulation is sufficient 
to re-normalize, at least partially, the abnormal firing patterns in the 
striatum that develop after 6 hydroxydopamine treatment [51,52]. 
On the other hand, the detailed anatomy of the non-human primate 
cortico-subthalamic pathway, suggests that cortical efferents send 
axonal branches not only to STN, but also down stream to the red 
nucleus and zona incerta [53]. A recent publication suggests a new 
method of stimulation deep in brain without invasive electrode 
surgery at least in mice [54]. Taking advantage of the neuronal low-
pass filter, electric fields can be delivered at frequencies too high to 
excite neurons individually, but in combination such electric fields 
provide frequencies low enough for some neurons, they can activate 
hippocampal neurons without the overlying cortical neurons [54]. 
Some serious challenges need to be overcome before this method can 
be applied to human brain, but the principle seems to work in the 
smaller, thinner skulled, rodent brain.

The influence of Parkinson’s disease in cortical physiology and 
anatomy has been evaluated in some studies that have emphasised 
the role of motor cortex in the disease [55-57,47,41]. These studies 
indicate that as the disease progresses there are consequences for the 
cortex. Can cortical stimulation replace DBS? Probably not, although 
the original test in monkeys seemed promising [58-59] and there is a 
reasonable positive review article [60] although it cannot be said to be 
a mainstream treatment.

Finally, the cortical involvement in Parkinson’s disease has as long 
a history as the discovery of cognitive effects of the disease. To my 
surprise and far from my cautious attribution of cortical disturbances 
to the symptoms of the disease, Jose A. Obeso has recently suggested
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