Profile
International Journal of Surgery & Surgical Procedures Volume 1 (2016), Article ID 1:IJSSP-113, 7 pages
https://doi.org/10.15344/2456-4443/2016/113
Review Article
The Skeletal Phenotype in Neurofibromatosis Type 1 - Structural Defects, Molecular Mechanisms and Therapeutic Approaches

Wenke Seifert1, Mateusz Kolanczyk and Jirko Kühnisch2*

1Institute for Vegetative Anatomy, Charité - University Medicine of Berlin, Berlin, 10115, Germany
2Experimental and Clinical Research Center (ECRC) Max-Delbrück-Centrum for Molecular Medicine (MDC), Charité - Universitätsmedizin Berlin, Berlin, Germany
Dr. Jirko Kühnisch, Experimental and Clinical Research Center (ECRC), Max-Delbrück-Centrum for Molecular Medicine (MDC), Lindenberger Weg 80, 13125 Berlin, Germany; Tel: +49(030)9406-3319; E-mail: jirko.kuehnisch@mdc-berlin.de
05 October 2016; 05 December 2016; 07 December 2016
Seifert W, Kolanczyk M, Kühnisch J (2016) The Skeletal Phenotype in Neurofibromatosis Type 1 - Structural Defects, Molecular Mechanisms and Therapeutic Approaches. Int J Surg Surgical Proced 1: 113. doi: https://doi.org/10.15344/2456-4443/2016/113
This study was sponsored with a grant by BioHorizons, Birmingham, AL, USA.

References

  1. Ratner N, Miller SJ (2015) A RASopathy gene commonly mutated in cancer: the neurofibromatosis type 1 tumour suppressor. Nat Rev Cancer 15: 290-301. View
  2. Rodríguez-Carballo E, Gámez B, Ventura F (2016) p38 MAPK Signaling in Osteoblast Differentiation. Front Cell Dev Biol 4: 40. View
  3. Kolanczyk M, Kossler N, Kühnisch J, Lavitas L, Stricker S, et al. (2007) Multiple roles for neurofibromin in skeletal development and growth. Hum Mol Genet 16: 874-886. View
  4. Friedrich RE, Holstein AF, Middendorff R, Davidoff MS (2012) Vascular wall cells contribute to tumourigenesis in cutaneous neurofibromas of patients with neurofibromatosis type 1. A comparative histological, ultrastructural and immunohistochemical study. Anticancer Res 32: 2139-2158. View
  5. De Raedt T, Beert E, Pasmant E, Luscan A, Brems H, et al. (2014) PRC2 loss amplifies Ras-driven transcription and confers sensitivity to BRD4- based therapies. Nature 514: 247-251. View
  6. Emmerich D, Zemojtel T2, Hecht J3, Krawitz P4, Spielmann M4, et al. (2015) Somatic neurofibromatosis type 1 (NF1) inactivation events in cutaneous neurofibromas of a single NF1 patient. Eur J Hum Genet 23: 870-873. View
  7. Korf BR (2013) Neurofibromatosis. Handb Clin Neurol 111: 333-340. View
  8. Uusitalo E, Hammais A, Palonen E, Brandt A, Makela VV, et al. (2014) Neurofibromatosis type 1 gene mutation analysis using sequence capture and high-throughput sequencing. Acta Derm Venereol 94: 663-666. View
  9. Stevenson DA, Birch PH, Friedman JM, Viskochil DH, Balestrazzi P, et al. (1999) Descriptive analysis of tibial pseudarthrosis in patients with neurofibromatosis 1. Am J Med Genet 84: 413-419. View
  10. Stevenson DA, Little D, Armstrong L, Crawford AH, Eastwood D, et al. (2013) Approaches to treating NF1 tibial pseudarthrosis: consensus from the Children's Tumor Foundation NF1 Bone Abnormalities Consortium. J Pediatr Orthop 33: 269-275. View
  11. Alwan S, Armstrong L, Joe H, Birch PH, Szudek J, et al. (2007) Associations of osseous abnormalities in Neurofibromatosis 1. Am J Med Genet A 143A: 1326-1333. View
  12. Brunetti-Pierri N, Doty SB, Hicks J, Phan K, Mendoza-Londono R, et al. (2008) Generalized metabolic bone disease in Neurofibromatosis type I. Mol Genet Metab 94: 105-111. View
  13. Illés T, Halmai V, de Jonge T, Dubousset J (2001) Decreased bone mineral density in neurofibromatosis-1 patients with spinal deformities. Osteoporos Int 12: 823-827. View
  14. Lammert M, Kappler M, Mautner VF, Lammert K, Störkel S, et al. (2005) Decreased bone mineral density in patients with neurofibromatosis 1. Osteoporos Int 16: 1161-1166. View
  15. Seitz S, Schnabel C, Busse B, Schmidt HU, Beil FT, et al. (2010) High bone turnover and accumulation of osteoid in patients with neurofibromatosis 1. Osteoporos Int 21: 119-127. View
  16. Stevenson DA, Carey JC, Viskochil DH, Moyer-Mileur LJ, Slater H, et al. (2009a) Analysis of radiographic characteristics of anterolateral bowing of the leg before fracture in neurofibromatosis type 1. J Pediatr Orthop 29: 385-392. View
  17. Tucker T, Schnabel C, Hartmann M, Friedrich RE, Frieling I, et al. (2009) Bone health and fracture rate in individuals with neurofibromatosis 1 (NF1). J Med Genet 46: 259-265. View
  18. Kuorilehto T, Pöyhönen M, Bloigu R, Heikkinen J, Väänänen K, et al. (2005) Decreased bone mineral density and content in neurofibromatosis type 1: lowest local values are located in the load-carrying parts of the body. Osteoporos Int 16: 928-936. View
  19. Lammert M, Friedman JM, Roth HJ, Friedrich RE, Kluwe L, et al. (2006) Vitamin D deficiency associated with number of neurofibromas in neurofibromatosis 1. J Med Genet 43: 810-813. View
  20. Alwan S, Tredwell SJ, Friedman JM (2005) Is osseous dysplasia a primary feature of neurofibromatosis 1 (NF1)? Clin Genet 67: 378-390. View
  21. Chappard D, Baslé MF, Legrand E, Audran M (2011) New laboratory tools in the assessment of bone quality. Osteoporos Int 22: 2225-2240. View
  22. Ritchie RO (2011) The conflicts between strength and toughness. Nat Mater 10: 817-822. View
  23. Ducroquet RL (1937) A propos des pseudoarthroses et inflexions conge´nitales du tibia. Mem Acad Chir (Paris) 63: 863-868.
  24. Crawford AH Jr, Bagamery N (1986) Osseous manifestations of neurofibromatosis in childhood. J Pediatr Orthop 6: 72-88. View
  25. Rudicel S (1987) The orthopaedic manifestations of neurofibromatosis. Conn Med 51: 221-222. View
  26. Stevenson DA, Zhou H, Ashrafi S, Messiaen LM, Carey JC, et al. (2006) Double inactivation of NF1 in tibial pseudarthrosis. Am J Hum Genet 79: 143-148. View
  27. Stevenson DA, Viskochil DH, Carey JC, Slater H, Murray M, et al. (2009b) Tibial geometry in individuals with neurofibromatosis type 1 without anterolateral bowing of the lower leg using peripheral quantitative computed tomography. Bone 44: 585-589. View
  28. Yu X, Chen S, Potter OL, Murthy SM, Li J, et al. (2005) Neurofibromin and its inactivation of Ras are prerequisites for osteoblast functioning. Bone 36: 793-802. View
  29. Elefteriou F, Benson MD, Sowa H, Starbuck M, Liu X, et al. (2006) ATF4 mediation of NF1 functions in osteoblast reveals a nutritional basis for congenital skeletal dysplasiae. Cell Metab 4: 441-451. View
  30. Kolanczyk M, Kühnisch J, Kossler N, Osswald M, Stumpp S, et al. (2008) Modelling neurofibromatosis type 1 tibial dysplasia and its treatment with lovastatin. BMC Med 6: 21. View
  31. Wang W, Nyman JS, Ono K, Stevenson DA, Yang X, et al. (2011) Mice lacking Nf1 in osteochondroprogenitor cells display skeletal dysplasia similar to patients with neurofibromatosis type I. Hum Mol Genet 20: 3910- 3924. View
  32. de la Croix Ndong J, Makowski AJ, Uppuganti S, Vignaux G, Ono K, et al. (2014) Asfotase-alpha improves bone growth, mineralization and strength in mouse models of neurofibromatosis type-1. Nat Med 20: 904-910. View
  33. Wang W, Nyman JS, Moss HE, Gutierrez G, Mundy GR, et al. (2010) Local low-dose lovastatin delivery improves the bone-healing defect caused by Nf1 loss of function in osteoblasts. J Bone Miner Res 25: 1658-1667. View
  34. Zhang W, Rhodes SD, Zhao L, He Y, Zhang Y, et al. (2011) Primary osteopathy of vertebrae in a neurofibromatosis type 1 murine model. Bone 48: 1378-1387. View
  35. Kossler N, Stricker S, Rödelsperger C, Robinson PN, Kim J, et al. (2011) Neurofibromin (Nf1) is required for skeletal muscle development. Hum Mol Genet 20: 2697-2709. View
  36. Kuhnisch J, Seto J, Lange C, Schrof S, Stumpp S, et al. (2014a) Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1. PLoS One 9: e86115. View
  37. Kuhnisch J, Seto J, Lange C, Stumpp S, Kobus K, et al. (2014b) Neurofibromin inactivation impairs osteocyte development in Nf1Prx1 and Nf1Col1 mouse models. Bone 66:155-62. View
  38. Benichou O, Lord SR (2016) Rationale for Strengthening Muscle to Prevent Falls and Fractures: A Review of the Evidence. Calcif Tissue Int 98: 531- 545. View
  39. Milne N (2016) Curved bones: An adaptation to habitual loading. J Theor Biol 407: 18-24. View
  40. Stevenson DA, Allen S, Tidyman WE, Carey JC, Viskochil DH, et al. (2012) Peripheral muscle weakness in RASopathies. Muscle Nerve 46: 394-399. View
  41. Sullivan K, El-Hoss J, Quinlan KG, Deo N, Garton F, et al. (2014) NF1 is a critical regulator of muscle development and metabolism. Hum Mol Genet 23: 1250-1259. View
  42. Schindeler A, Morse A, Harry L, Godfrey C, Mikulec K, et al. (2008) Models of tibial fracture healing in normal and Nf1-deficient mice. J Orthop Res 26: 1053-1060. View
  43. El-Hoss J, Cheng T, Carpenter EC, Sullivan K, Deo N, et al. (2014) A Combination of rhBMP-2 (Recombinant Human Bone Morphogenetic Protein-2) and MEK (MAP Kinase/ERK Kinase) Inhibitor PD0325901 Increases Bone Formation in a Murine Model of Neurofibromatosis Type I Pseudarthrosis. J Bone Joint Surg Am 96: e117. View
  44. Sharma R, Wu X, Rhodes SD, Chen S, He Y, et al. (2013) Hyperactive Ras/MAPK signaling is critical for tibial nonunion fracture in neurofibromindeficient mice. Hum Mol Genet 22: 4818-4828. View
  45. Vukicevic S, Oppermann H, Verbanac D, Jankolija M, Popek I, et al. (2014) The clinical use of bone morphogenetic proteins revisited: a novel biocompatible carrier device OSTEOGROW for bone healing. Int Orthop 38: 635-647. View
  46. Schindeler A, Ramachandran M, Godfrey C, Morse A, McDonald M, et al. (2008b) Modeling bone morphogenetic protein and bisphosphonate combination therapy in wild-type and Nf1 haploinsufficient mice. J Orthop Res 26: 65-74. View
  47. El-Hoss J, Sullivan K, Cheng T, Yu NY, Bobyn JD, et al. (2011) A murine model of neurofibromatosis type 1 tibial pseudarthrosis featuring proliferative fibrous tissue and osteoclast-like cells. J Bone Miner Res 27: 68-78. View
  48. Bobyn J, Rasch A, Kathy M, Little DG, Schindeler A (2014) Maximizing bone formation in posterior spine fusion using rhBMP-2 and zoledronic acid in wild type and NF1 deficient mice. J Orthop Res 32: 1090-1094. View
  49. de la Croix Ndong J, Stevens DM, Vignaux G, Uppuganti S, Perrien DS, et al. (2015) Combined MEK inhibition and BMP2 treatment promotes osteoblast differentiation and bone healing in Nf1Osx -/- mice. J Bone Miner Res 30: 55-63. View
  50. Birke O, Schindeler A, Ramachandran M, Cowell CT, Munns CF, et al. (2010) Preliminary experience with the combined use of recombinant bone morphogenetic protein and bisphosphonates in the treatment of congenital pseudarthrosis of the tibia. J Child Orthop 4: 507-517. View
  51. Richards BS, Anderson TD (2016) rhBMP-2 and Intramedullary Fixation in Congenital Pseudarthrosis of the Tibia. J Pediatr Orthop . View
  52. Das SP, Ganesh S, Pradhan S, Singh D, Mohanty RN (2014) Effectiveness of recombinant human bone morphogenetic protein-7 in the management of congenital pseudoarthrosis of the tibia: a randomised controlled trial. Int Orthop 38: 1987-1992. View