Profile
International Journal of Physical Therapy & Rehabilitation Volume 7 (2021), Article ID 7:IJPTR-176, 8 pages
https://doi.org/10.15344/2455-7498/2021/176
Research Article
Special Issue: Various Approaches for Rehabilitation Science-Vol III
Exercise Intensity and Type of Activity Effects Landing Mechanics and Increases Anterior Cruciate Ligament (ACL) Injury Risk

David J Dominguese1,* and J. Derek Kingsley2

1Department of Physical Therapy and Health Science, Bradley University, USA
2Exercise Science and Exercise Physiology, Kent State University, USA
Prof. David J Dominguese, Department of Physical Therapy and Health Science, Bradley University, 1501 W. Bradley Ave, Olin Hall 344, Peoria, IL 61625, USA, Tel: 309-677-3293, Fax: 309-677-4053; E-mail: ddominguese@bradley.edu
17 August 2021; 11 September 2021; 13 September 2021
Dominguese DJ, Kingsley JD (2021) Exercise Intensity and Type of Activity Effects Landing Mechanics and Increases Anterior Cruciate Ligament (ACL) Injury Risk. Int J Phys Ther Rehab 7: 176. doi: https://doi.org/10.15344/2455-7498/2021/176

References

  1. Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, et al. (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 1: Mechanisms of injury and underlying risk factors. Knee Surg Sports Traumatol Arthrosc 17: 705-729. [CrossRef] [Google Scholar] [PubMed]
  2. Beutler AI, de la Motte SJ, Marshall SW, Padua DA, Boden B, et al. (2009) Muscle strength and qualitative jump-landing differences in male and female military cadets: The jump-ACL study. J of Sports Med 8: 663-671. [Google Scholar] [PubMed]
  3. Chappell JD, Creighton A, Giuliani C, Garrett B, Garrett WE, et al. (2007) Noncontact anterior cruciate ligament injury. Am J Sports Med 35: 235-241. [CrossRef] [PubMed]
  4. Hewett TE, Myer GD, Ford KR, Heidt Jr RS, Colosimo AJ, et al. (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. Am J Sports Med 33: 492-501. [CrossRef] [Google Scholar] [PubMed]
  5. Jacobs CA, Uh TL, Mattacola CG, Shapiro R, Rayens WS, et al. (2007) Hip abductor function and lower extremity landing kinetics: Sex difference. J Athl Train 42: 76-83. [Google Scholar] [PubMed]
  6. Kernozek TW, Torry MR, Van Hoof H, Cowley H, Tanner S, et al. (2005) Gender differences in frontal and sagittal plane biomechanics during drop landings. Am J Sports Med 37: 1003-1011. [Google Scholar] [PubMed]
  7. Quatman CE, Ford KR, Myer GD, Hewett TE (2006) Maturation leads to gender differences in landing force and vertical jump performance: A longitudinal study. Am J Sports Med 34: 806-812. [CrossRef] [Google Scholar] [PubMed]
  8. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, et al. (2006) Understanding and preventing non-contact ACL injuries: A review of the Hunt Valley II meeting. Am J Sports Med 34: 1512-1532. [CrossRef] [Google Scholar] [PubMed]
  9. Kellis E, Kouvelioti V (2007) Agonist versus antagonist muscle fatigue effects on thigh muscle activity and vertical ground reaction during drop landing. J Electromyogr Kinesiol 13: 491-498. [CrossRef] [Google Scholar] [PubMed]
  10. Fukuda Y, Woo SL, Loh JC, Tsuda E, Tang P, et al. (2003) A quantitative analysis of valgus torque on the ACL: A human cadaveric study. J Orthop Res 21: 1107-1112. [CrossRef] [Google Scholar] [PubMed]
  11. Fung DT, Hendrix RW, Koh JL, Zhang LQ (2007) ACL impingement prediction based on MRI scans of individual knees. Clin Orthop Relat Res 460: 210-218. [CrossRef] [Google Scholar] [PubMed]
  12. Fung DT, Zhang L (2003) Modeling of ACL impingement against the intercondylar notch. Clin Biomech 18: 933-941. [CrossRef] [Google Scholar] [PubMed]
  13. Padua DA, DiStefano LJ, Marshall SW, Beutler AI, de la Motte SJ, et al. (2012) Retention of movement pattern changes after a lower extremity injury prevention program is affected by program duration. Am J Sports Med 40: 300-306. [CrossRef] [Google Scholar] [PubMed]
  14. Benjaminse A, Habu A, Sell TC, Abt JP, Fu FH, et al. (2008) Fatigue alters lower extremity kinematics during a single-leg stop-jump task. Knee Surg Sports Traumatol Arthrosc 16: 400-407. [CrossRef] [Google Scholar] [PubMed]
  15. Cameron KL (2010) Time for a paradigm shift in conceptualizing risk factors in sport injury research. J Athl Train 45: 58-60. [Google Scholar] [PubMed]
  16. Coventry E, O’Connor KM, Hart BA, Earl JE, Ebersole KT, et al. (2006) The effect of lower extremity fatigue on shock attenuation during single-leg landing. Clin Biomechs 21: 1090-1097. [CrossRef] [Google Scholar] [PubMed]
  17. Dominguese DJ, Seegmiller JG, Krause BA (2012) A single session of repeated wingate anaerobic tests caused alterations in ground reaction forces during drop landings. J Sprt Rehab 21: 306-312.
  18. Finch C (2006) A new framework for research leading to sports injury prevention. J Sci Med Sport 9: 3-9. [CrossRef] [Google Scholar] [PubMed]
  19. Ortiz A, Oslon SL, Etnyre B, Trudelle-Jackson EE, Bartlett W, et al. (2010) Fatigue effects on knee joint stability during two jump task in women. J Strength Cond Res 24: 1019-1027. [CrossRef] [Google Scholar] [PubMed]
  20. Barry BK, Enoka RM (2007) The neurobiology of muscle fatigue: 15 years later. Integr Commp Biol 47: 465-473. [CrossRef] [Google Scholar] [PubMed]
  21. Enoka RM, Duchateau J (2008) Muscle fatigue: what, why and how it influences muscle function. J Pysiol 586: 11-23. [CrossRef] [Google Scholar] [PubMed]
  22. Laurent MC, Meyers MC, Robinson CA, Green JM (2007) Cross-validation of the 20-versus 30-s wingate anaerobic test. Eur J Appl Physiol 100: 645-651. [CrossRef] [Google Scholar] [PubMed]
  23. Padua DA, Arnold BL, Carcia CR, Granata KP (2006) Gender differences in leg stiffness and stiffness recruitment strategy during two-legged hopping. J Mot Behav 37: 111-125. [CrossRef] [Google Scholar] [PubMed]
  24. Leister I, Mattiassich G, Kindermann H, Ortmaier R, Barthofer J, et al. (2018) Reference values for fatigue versus non-fatigued limb symmetry index measured by a newly designed single-leg hop test battery in healthy subjects a pilot study. Sport Sci Health 14: 105-113. [CrossRef] [Google Scholar] [PubMed]
  25. Sharma N, Sharma A, Sadhu JS (2011) Functional performance testing in athletes with functional ankle instability. Asian J Sports Med 2: 249-258. [CrossRef] [Google Scholar] [PubMed]
  26. Fitgerald GK, Lephart SM, Hwang JH, Wainner RS (2001) Hop test as predictors of dynamic knee stability. J Orthop Sports Phys Ther 31: 588-597. [CrossRef] [Google Scholar] [PubMed]
  27. Smith HC, Johnson RJ, Shultz SJ, Tourville T, Holterman LA, et al. (2012) A prospective evaluation of the Landing Error Scoring System (LESS) as a screening tool for anterior cruciate ligament injury risk. Am J Sports Med 40: 521-526. [CrossRef] [Google Scholar] [PubMed]
  28. Padua DA, Boling MC, Distefano LJ, Onate JA, Beutler AI, et al. (2011) Reliability of the landing error scoring system-real time, a clinical assessment tool of jump-landing biomechanics. J Sport Rehabil 20: 145-156. [CrossRef] [Google Scholar] [PubMed]
  29. Padua DA, Marshall SW, Boling MC, Thigpen CA, Garrett Jr WE, et al. The landing error scoring system (LESS) is a valid and reliable clinical assessment tool of jump-landing biomechanics: The jump-acl study. Am J Sports Med 37: 1996-2002. [CrossRef] [Google Scholar] [PubMed]
  30. Padua DA, DiStefano LJ, Beutler AI, de la Motte SJ, DiStefano MJ, et al. (2015) The landing error scoring system as a screening tool for an anterior cruciate ligament injury-prevention program in elite-youth soccer athletes. J Athl Train 50: 589-595. [CrossRef] [Google Scholar] [PubMed]
  31. Bell DR, Smith MD, Pennuto AP, Stiffler MR, Olson ME, et al. (2014) Jump-landing mechanics after anterior cruciate ligament reconstruction: a landing error scoring system study. J Athl Train 49: 435-441. [CrossRef] [Google Scholar] [PubMed]
  32. Kanamori A, Zeminski J, Rudy TW, Li G, Fu FH, et al. (2002) The effect of axial tibial torque on the function of the anterior cruciate ligament: A biomechanical study of a simulated pivot shift test. Arthroscopy 18: 394-398. [CrossRef] [Google Scholar] [PubMed]
  33. Tsai LC, Sigward SM, Pollard CD, Fletcher MJ, Powers CM, et al. (2008) The effects of fatigue and recovery on knee kinetics and kinematics during side-step cutting. Med Sci Sports Exerc 41: 1952-1957. [CrossRef] [Google Scholar] [PubMed]
  34. Dominguese DJ (2010) A Single Session of Repeated Wingate Anaerobic Test Caused Alterations in Peak Ground Reaction Force during Drop Landing. College of Education Ohio University. [Google Scholar]
  35. Schmitz RJ, Kulas AS, Perrin DH, Riemann BL, Shultz SJ, et al. (2007) Sex differences in lower extremity biomechanics during single leg landings. Clin Biomech 22: 681-688. [CrossRef] [Google Scholar] [PubMed]
  36. Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, et al. (2013) Association between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol 113: 147-155. [CrossRef] [Google Scholar] [PubMed]
  37. Bates BT, Dufek JS, Davis HP (1992) The effect of trial size on statistical power. Med Sci Sports Exerc 24: 1059-1065. [Google Scholar] [PubMed]
  38. McHugh ML (2012) Interrater reliability: the kappa statistic. Biochem Med 3: 276-282. [Google Scholar] [PubMed]
  39. Bourne MN, Webster KE, Hewett TE (2019) Is fatigue a risk factor for anterior cruciate ligament rupture? Sports Med 49: 1629-1635. [CrossRef] [Google Scholar] [PubMed]
  40. Onate J, Cortes N, Welch C, van Lunen B (2010) Expert Versus Novice Interrater Reliability and Criterion Validity of the Landing Error Scoring System. J Sprt Rehab 19: 41-56. [CrossRef] [Google Scholar] [PubMed]
  41. Rudolph KS, Axe MJ, Snyder-Mackler L (2000) Dynamic stability after ACL injury: Who can hop? Knee Surg Sports Traumatol Arthrosc 8: 262-269. [CrossRef] [Google Scholar] [PubMed]
  42. Zupan MF, Arata AW, Dawson LH, Wile AL, Payn TL, et al. (2009) Wingate anaerobic test peak power and anaerobic capacity classification for men and women intercollegiate athletes. J Strength Cond Res 23: 2958-2604. [CrossRef] [Google Scholar] [PubMed]