Profile
International Journal of Physical Therapy & Rehabilitation Volume 2 (2016), Article ID 2:IJPTR-111, 6 pages
https://doi.org/10.15344/2455-7498/2016/111
Research Article
An Assessment of Bamboo as a Potential Low-Cost Material for Exoskeleton Design in Normal Walking

Kischa S. Reed1* and Peter N. Kalu2

1Division of Physical Therapy, Florida A&M University, Tallahassee, FL 32307, USA
2Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
Dr. Kischa S. Reed, Division of Physical Therapy, Florida A&M University, Tallahassee, FL 32307, USA; Tel: +1 850 412 6629 E-mail: kischa.reed@famu.edu
18 September 2015; 06 February 2016; 09 February 2016
Reed KS, Kalu PN (2016) An Assessment of Bamboo as a Potential Low-Cost Material for Exoskeleton Design in Normal Walking. Int J Phys Ther Rehab 2: 111. doi: https://doi.org/10.15344/2455-7498/2016/111

References

  1. Dellon B, Matsuoka Y (2007) Prosthetics, exoskeletons, and rehabilitation [Grand challenges of robotics]. IEEE Robot Autom Mag 14: 30-34 [CrossRef] [Google Scholar]
  2. Ferrati F, Bortoletto R, Menegatti E, Pagello E (2013) Socio-economic impact of medical lower-limb exoskeletons, IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO) Shibaura Institute of Technology 19 - 26 [CrossRef] [Google Scholar]
  3. ReWalk Robotics (2014) ReWalk-Rehabilitation
  4. Wolff J, Parker C, Borisoff J, Mortenson WB, Mattie J (2014) A survey of stakeholder perspectives on exoskeleton technology. J Neuroeng Rehabil 11: 169 [CrossRef] [Google Scholar] [PubMed]
  5. Guizzo E, Goldstein H (2005) The rise of the body bots [robotic exoskeletons]. IEEE Spectr 42: 10 [CrossRef] [Google Scholar]
  6. Ferris DP, Sawicki GS, Daley MA (2007) A Physiologist's Perspective on Robotic Exoskeletons for Human Locomotion. Int J HR 4: 507-528 [CrossRef] [Google Scholar] [PubMed]
  7. Neumann DA (2010) Kinesiology of the Musculoskeletal System: Foundations for Rehabilitation. (2nd edition), St. Louis: Missouri, Mosby, USA 627- 681
  8. Dollar AM, Herr H (2008) Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans Robot 24:144-158 [Google Scholar]
  9. Waters RL, Mulroy S (1999) The energy expenditure of normal and pathologic gait. Gait Posture 9: 207-231 [CrossRef] [Google Scholar] [PubMed]
  10. Sant’Anna A, Wickström N, Zügner R, Tranberg R (2012) A wearable gait analysis system using inertial sensors Part II?: Evaluation in a clinical setting. BIOSIGNALS 2012 - Proc Int Conf Bio-Inspired Syst Signal Process: 5-14 [Google Scholar]
  11. Gottschall JS1, Kram R (2005) Energy cost and muscular activity required for leg swing during walking. J Appl Physiol (1985) 99: 23-30 [CrossRef] [Google Scholar] [PubMed]
  12. Browning RC, Modica JR, Kram R, Goswami A (2007) The effects of adding mass to the legs on the energetics and biomechanics of walking. Med Sci Sports Exerc 39: 515-525 [CrossRef] [Google Scholar] [PubMed]
  13. Bianchi L, Angelini D, Lacquaniti F (1998) Individual characteristics of human walking mechanics. Pflugers Arch 436: 343-356 [CrossRef] [Google Scholar] [PubMed]
  14. Burdett RG, Skrinar GS, Simon SR (1983) Comparison of mechanical work and metabolic energy consumption during normal gait. J Orthop Res 1: 63-72 [CrossRef] [Google Scholar] [PubMed]
  15. Gottschall JS, Kram R (2003) Energy cost and muscular activity required for propulsion during walking. J Appl Physiol (1985) 94: 1766-1772 [CrossRef] [Google Scholar] [PubMed]
  16. Ashby MF (2011) Materials Selection in Mechanical Design. (4th edition), Elsevier Science 219 - 222 [Google Scholar]
  17. Chung KF, Yu WK. (2002) Mechanical properties of structural bamboo for bamboo scaffoldings. Eng Struct 24: 429-442 [CrossRef] [Google Scholar]
  18. Gezer H, Aydemir B (2010) The effect of the wrapped carbon fiber reinforced polymer material on fir and pine woods. Mater Des 31: 3564-3567 [CrossRef] [Google Scholar]