Profile
International Journal of Mechanical Systems Engineering Volume 3 (2017), Article ID 3:IJMSE-125, 7 pages
http://dx.doi.org/10.15344/2455-7412/2017/125
Research Article
Single Loop Electrochemical Potentiokinetic Reactivation Behaviour of Continuously Cooled SUS329J4L Duplex Stainless Steel

Rongguang Wang1*, Masanobu Imagawa2, Masaharu Honda3 and Hideki Fukuhara4

1Department of Mechanical Systems Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima, 731-5193, Japan
2Graduate School of Science and Technology, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-Ku, Hiroshima 731-5193, Japan
3Nikko Techno Co., Ltd, 1-6-1 Funakoshiminami, Aki-ku, Hiroshima, 736-8602, Japan
4The Japan Steel Works, Ltd., 1-6-1 Funakoshiminami, Aki-ku, Hiroshima, 736-8602, Japan
Prof. Rongguang Wang, Department of Mechanical Systems Engineering, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima, 731-5193, Japan; E-mail: wangrg@cc.it-hiroshima.ac.jp
03 November 2017; 28 November 2017; 30 November 2017
Wang R, Imagawa M, Honda M, Fukuhara H (2017) Single Loop Electrochemical Potentiokinetic Reactivation Behaviour of Continuously Cooled SUS329J4L Duplex Stainless Steel. Int J Mech Syst Eng 3: 125. https://doi.org/10.15344/2455-7412/2017/125

References

  1. Nakade K, Kuroda T (2007) Precipitation mechanism of sigma phase in super duplex stainless steels. Journal of High Temperature Society 33: 95- 100.
  2. Kasper JS, Waterstrat RM (1956) Ordering of atoms in the σ phase. Acta Cryst 9: 289-295.
  3. Dickins GJ, Douglas AMB, Taylor WH (1956) The crystal structure of the Co-Cr σ phase. Acta Cryst 9: 297-303.
  4. Kumada K (1963) About sigma phase. Bulletin of the Japan Institute of Metals 2: 261-271.
  5. Obata E, Itoh K, Iikubo T (1978) Precipitation behavior of σ phase in microduplex stainless steel. Denki Seiko (Electr. Furn. Steel) 49: 242-250.
  6. Maehara Y, Koike M, Fujino N, Kunitake T (1981) Precipitation behavior of σ Phase in duplex phase stainless steel. Tetsu-to-Hagane 67: 577-586.
  7. Chen TH, Weng KL, Yang JR (2002) The effect of high-temperature exposure on the microstructural stability and toughness property in a 2205 duplex stainless steel. Mater Sci Eng A338: 259-270.
  8. Hashizume S, Sato K, Honda M, Masamura K, Sakai J, Matsushima I (1996) Effect of sigma phase on corrosion resistance of duplex stainless steels. Zairyo-to-kankyo 45: 83-89.
  9. Ohmori Y, Maehara Y (1984) Precipitaiton of M23C6 and σ-phase in δ/γ duplex stainless steels. Tetsu-to-Hagane 70: 428-435.
  10. Tamura I, Isogami K, Maki T, Fujiwara S (1976) The aging behavior of an Fe-Cr-Ni duplex alloy of ferrite and austenite. J Jpn Inst Met 40: 353-360.
  11. Michalska J, Sozańska M (2006) Qualitative and quantitative analysis of σ and χ phases in 2205 duplex stainless steel. Mater Charact 56: 355-362.
  12. Kashiwar A, PhaniVennela N, Kamath SL, Khatirkar RK (2012) Effect of solution annealing temperature on precipitation in 2205 duplex stainless steel. Mater Charact 74: 55-63.
  13. Chen TH, Yang JR (2001) Effects of solution treatment and continuous cooling on sigma-phase precipitation in a 2205 duplex stainless steel. Mater Sci Eng A311: 28-41.
  14. Maehara Y, Fujino N, Kunitake T (1982) Influence of various factors on the precipitation behavior of sigma phase in duplex phase stainless steel. Tetsu-to-Hagane 68: 673-681.
  15. Elshawesh F, Elahresh N, Elhoud A (1998) Effect of σ phase on pitting corrosion of 22-5 duplex stainless steel. British Corrosion Journal 33: 285- 287.
  16. Ravindranath K, Malhotra SN (1994) Influence of aging on intergranular corrosion of a 25% chromium-5% nickel duplex stainless steel. Corrosion 50: 318-328.
  17. Davison RM, Redmond JD (1991) Development of qualification tests for duplex stainless steel mill products. Corrosion 91: The NACE Annual Conference and Corrosion Show.
  18. ASTM standard A923-03 (1994) Standard test methods for detecting detrimental intermetallic phase in duplex austenitic / ferritic stainless steels. ASTM International.
  19. Fukuhara H, Mori T, Wang R, Imagawa M (2014) Effect of cooling rate on mechanical and corrosion properties of SUS329J4L duplex stainless steel, Collected Abstracts of the 57th Meeting of the Chugoku-Shikoku Branch of Iron and Steel Inst. of Japan and 54th Meeting of the Chugoku-Shikoku Branch of Japan Inst. Metals and Materials.
  20. Lopez N, Cid M, Puiggali M, Azkarate I, Pelayo A (1997) Application of double loop electrochemical potentiodynamic reactivation test to austenitic and duplex stainless steel. Mater Sci Eng A229: 123-128.
  21. Sugiyama M, Kaneko S, Umemura F (1985) Electrochemical method for evaluating the intergranular corrosion susceptibility of stainless steel (JIS draft proposal). Corrosion Engineering 34: 685-691.
  22. Číhal V, Štefec R (2001) On the development of the electrochemical potentiokinetic method. Electr Act 46: 3867-3877.
  23. Wang R, Imagawa M, Honda M, Mori T, Fukuhara H (2017) Double loop electrochemical potentiokinetic reactivation behaviour of continuously cooled SUS329J4L duplex stainless steel. Corr Eng Sci Tech.
  24. Kain V, Watanabe Y (2002) Development of a single loop EPR test method and its relation to grain boundary microchemistry for alloy 600. Journal of Nuclear Materials 302: 49-59.
  25. Leiva-Garcia R, Munoz-Portero MJ, Garcia-Anton J (2011) In-situ study of single and double loop reactivation methods during the characterisation of the degree of sensitisation of a duplex stainless steel (UNS 1.4462) using a minicell and a confocal microscope. Int J Electroche Sci 6: 830-846.
  26. ASTM standard G108-94 (2010) Standard test method for electrochemical reactivation (EPR) for detecting sensitization of AISI type 304 and 304L stainless steels. ASTM International.
  27. Sieurin H, Sandström R (2007) Sigma phase precipitation in duplex stainless steel 2205. Mater SciEng A444: 271-276.
  28. Ito N, Okamoto G (1960) On the Potentiostatic etching of metallographic structure of stainless stee1. J Japan Inst Metals 24: 109-113.
  29. Duffaut F, Pouzet JP, Lacombe P (1966) Potentiostatic study of structural modifications caused in a Ni-Cr-Fe alloy by heat treatment at 650 °C. Corrosion Science 6: 83-84.
  30. Roelandt A, Vereecken J (1986) A modified electrochemical technique (electrochemical potentiokinetic reactivation) for evaluating the susceptibility of Inconel 600 to intergranular corrosion. Corrosion 42: 289-298.