Profile
International Journal of Mechanical Systems Engineering Volume 3 (2017), Article ID 3:IJMSE-122, 11 pages
http://dx.doi.org/10.15344/2455-7412/2017/122
Review Article
Various Robots Made from Piezoelectric Materials and Electroactive Polymers: A Review

Jung-Woo Sohn1 and Seung-Bok Choi2*

1Department of Mechanical Design Engineering, Kumoh National Institute of Technology, Gumi, South Korea
2Department of Mechanical Engineering, Inha University, Incheon, South Korea
Prof. Seung-Bok Choi, Department of Mechanical Engineering, Inha University, 100 Inha-ro, Yonghyeon 1(il).4(sa)-dong, Nam-gu, Incheon, South Korea; E-mail: seungbok@inha.ac.kr
18 September 2017; 07 November 2017; 09 November 2017
Sohn JW, Choi SB (2017) Various Robots Made from Piezoelectric Materials and Electroactive Polymers: A Review. Int J Mech Syst Eng 3: 122. https://doi.org/10.15344/2455-7412/2017/122

References

  1. Chopra I (2002) Review of State of Art of Smart Structures and Integrated Systems. AIAA Journal 40: 2145-2187. View
  2. Crawley EF, de Luis J (1987) Use of Piezoelectric Actuators as Elements of Intelligent Structures. AIAA Journal 25 1373-1385. View
  3. Tzou HS (1989) Development of a light-weight robot end-effector using polymeric piezoelectric bimorph, Proceedings, 1989 International Conference on Robotics and Automation 3: 1704-1709. View
  4. Wu Z, Bao XQ, Varadan VK, Varadan VV (1992) Light-weight robot using piezoelectric motor, sensor and actuator. Smart Materials and Structures 1: 330-340. View
  5. Fatikow S, Zollner J, Santa K, Zollner R, Haag A (1997) Flexible piezoelectric micromanipulation robots for a microassembly desktop station. Proceedings of the 8th International Conference on Advanced Robotics, p 241-246. View
  6. Zhang X, Zhang G, Nakamura K, Ueha S (2011) A robot finger joint driven by hybrid multi-DOF piezoelectric ultrasonic motor. Sensors and actuators A: Physical 169: 206-210. View
  7. Hollinger GA, Briscoe J M (2005) Genetic optimization and simulation of a piezoelectric pipe-crawling inspection robot. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, p 484-489. View
  8. Yan S, Zhang F, Qin Z, Wen SA (2006) 3-DOFs mobile robot driven by a piezoelectric actuator. Smart Materials and Structures 15: N7-N13. View
  9. Yumaryanto AA, Ana J, Lee S (2006) A Cockroach-Inspired Hexapod Robot Actuated by LIPCA. IEEE Conference on Robotics, Automation and Mechatronics, p 1-6. View
  10. Ho T, Lee S (2009) Piezoelectrically actuated biomimetic self-contained quadruped bounding robot. Journal of bionics engineering 6: 29-36. View
  11. Song YS, Sitti M (2007) Surface-tension-driven biologically inspired water strider robots: theory and experiments. IEEE transactions on robotics: a publication of the IEEE Robotics and Automation Society 23: 578-589. View
  12. Heo S, Wiguna T, Park H, Goo N (2007) Effect of an artificial caudal fin on the performance of a biomimetic fish robot propelled by piezoelectric actuators. Journal of bionics engineering 4: 151-158. View
  13. Wiguna T, Heo S, Park HC, Goo NS (2009) Design and experimental parameteric Study of a fish robot actuated by piezoelectric actuators. Journal of intelligent material systems and structures 20: 751-758.
  14. Zhao W, Osaka T, Ming A, Shimojo M (2011) Development of a soft underwater robot mimicking cownosed ray. IEEE International Conference on Robotics and Biomimetics, p 1724-1729.
  15. Aiguo M, Ichikawa T, Wenjing Z, Shimojo M (2014) Development of a sea snake-like underwater robot. IEEE International Conference on Robotics and Biomimetics, p 761-766. View
  16. Ming A, Huang Y, Fukushima Y, Shimojo M (2009) Development of an active flapping wing using Piezoelectric Fiber Composites. International Conference on Robotics and Biomimetics, p 2144-2149. View
  17. Fukushima Y, Minagawa K, Aiguo M, Shimojo M (2010) Development of flapping robots using piezoelectric fiber composites - development of driving module inspired by insects with indirect flight muscle. International Conference on Mechatronics and Automation, p 77-82. View
  18. Ming A, Luekiatphaisan N, Shimojo M (2012) Development of flapping robots using piezoelectric fibercomposites - Improvement of flapping mechanism inspired from insects with indirect flight muscle. International Conference on Mechatronics and Automation, p 1880-1885. View
  19. Wood R J (2008) The first takeoff of a biologically inspired at-scale robotic insect. IEEE Transaction on Robotics 24: 1-7. View
  20. Bar-Cohen Y (2000) Electroactive polymers as artificial muscles – capabilities, potentials and challenges, in: Y. Bar-Cohen (Ed.), Handbook on Biomimetics, Section 11, ROBOTICS 2000, 1-13. View
  21. Bar-Cohen Y (2002) Electroactive polymers as artificial muscles: A review. Journal of Spacecraft and Rockets 39: 822-827. View
  22. Bar-Cohen Y (2009) Electroactive polymer (EAP) actuators for future humanlike robots [7287-02], Proceedings of SPIE-the international society for optical engineering 7287 728703.
  23. Kim K J and Tadokoro S (Eds) 2007 Electroactive polymer for robotic applications, Springer, Berlin.
  24. Brochu P, Pei Q (2010) Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular rapid communications 31: 10-36.
  25. Kwak JW, Chi HJ, Jung KM, Koo JC, Jeon JW, et al. (2005) A face robot actuated with artificial muscle base on dielectric elastomer. Journal of Mechanical Science and Technology 19: 578-588. View
  26. Kovacs G, Lochmatter P, Wissler M (2007) An arm wrestling robot driven by dielectric elastomer actuators. Smart Materials and Structures 16: S306-S317. View
  27. Pei Q, Pelrine R, Standord S, Kornbluh R, Rosenthal M (2003) Electroelastomer rolls and their application for biomimetic walking robots. Marcus Synthetic Metals 135/136 129-131.
  28. Carpi F, Salaris C, Rossi D (2007) Folded dielectric elastomer actuators. Smart Materials and Structures 16: S300-S305. View
  29. Cianchetti M, Mattoli B, Mazzolai Laschi C, Dario P (2009) A new design methodology of electrostrictive actuators for bio-inspired robotics. Sensors and Actuators B: Chemical 142: 288-197. View
  30. Nguyen HC, Nguyen HLV, Kim D, Moon H, Koo JC, et al. (2010) Design and control of a multi-jointed robot finger driven by an artificial muscle actuator. Advanced Robotics 24: 1983-2003. View
  31. Nguyen CT, Phung H, Nguyen TD, Lee C, Kim U, et al. (2014) A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators. Smart Materials and Structures 23: 065005.
  32. Pei Q, Rosenthal M, Stanford S, Prahlad H, Pelrine R (2004) Multiple degrees of freedom electroelastomer roll actuators. Smart Mater. Struct 13: N86-N92. View
  33. Shahinpoor M, Kim K (2001) Ionic polymer-metal composites: I. fundamentals. Smart Materials and Structures 10: 819-833. View
  34. Chu WS, Lee KT, Son SH, Han MW, Lee JY, et al. (2012) Review of biomimetic underwater robots using smart actuators. International Journal of Precision Engineering and Manufacturing 13: 1281-129. View
  35. Shahipoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymermetal Composites as biomimetic sensors, actuators and artificial muscles-A review. Smart Materials and Structures 7: 15-30. View
  36. Kim B, Kim DH, Jung J, Park JO (2005) A biomimetic undulatory tadpole robot using ionic polymer–metal composite actuators. Smart Materials and Structures 14: 1579-1585. View