Profile
International Journal of Mechanical Systems Engineering Volume 2 (2016), Article ID 2:IJMSE-118, 8 pages
http://dx.doi.org/10.15344/2455-7412/2016/112
Review Article
Combination of Homogeneous Electro-rheological Fluid and Multi- Electrodes Damper for A Better Control of Car Suspension Motion

Sadok Sassi1* and Khaled Cherif2

1Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Al Tarfa, Doha 2713, Qatar
2Unité de Recherche "Matériaux et Structures Intelligentes", Académie Militaire de Fondouk Jédid, 8012 Nabeul, Tunisia
Dr. Sadok Sassi, Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Al Tarfa, Doha 2713, Qatar; E-mail: sadok.sassi@qu.edu.qa
17 October 2015; 07 January 2016; 09 January 2016
Sassi S, Cherif K (2016) Combination of Homogeneous Electrorheological Fluid and Multi-Electrodes Damper for A Better Control of Car Suspension Motion. Int J Mech Syst Eng 2: 112. http://dx.doi.org/10.15344/2455-7412/2016/112

References

  1. Kim KS, Choi SB, Cheong CC, Suh MS (1997) A continuously variable ER damper with energy generation, Proceedings of the 6th International Conference on Electro-Rheological Fluids, Magneto-Rheological Suspensions and Their Applications, Yonezawa, Japan, 22-25.
  2. Bitman L, Choi YT, Choi SB, Wereley NM (2005) Electrorheological Damper Analysis Using an Eyring-Plastic Model. Smart Materials and Structures 14: 237-246. View
  3. Choi SB, Han YM, Sung KG (2008) Vibration Control of Vehicle Suspension System Featuring ER Shock Absorber. Int J Appl Electrom 27: 189-204. View
  4. Halsey TC (1992) Electrorheological Fluids. Science 258: 761-766. View
  5. Symans MD, Constantinou MC (1999) Semi-active control systems for seismic protection of structures: a state-of-the-art review. Engineering Structures 21: 469-487. View
  6. Petek NK (1992) An electronically controlled shock absorber using electrorheological fluid. SAE Technical Paper Series 920275. View
  7. Petek NK, Romstadt DJ, Lizell MB, Weyenberg TR (1995) Demonstration of an automotive semi-active suspension using electrorheological fluid. SAE Technical Paper Series 950586. View
  8. Weyenberg TR, Pialet JW, Petek NK (1996) The development of ER fluids for an automotive semi-active suspension system. International Journal of Modern Physics B 10: 3201-3209. View
  9. Wong JY, Wu XM, Sturk M, Bortolotto C (1993) On the application of ER fluid to the development of semi-active suspension systems for ground vehicles. Transactions of the CSME 17 (4B): 789-800.
  10. Wu XM, Wong JY, Sturk M, Russell DL (1994) Simulation and experimental study of a semi-active suspension with an ER damper. International Journal of Modern Physics B 8: 2987-3003. View
  11. NakanoM (1995) A novel semi-active control of automotive suspension using an electrorheological shock absorber, Proceedings of the Fifth International Conference on ER Fluid, MR Suspensions and Associated Technology 645.
  12. Choi SB, Choi YT, Park DW (2000) A sliding mode control of a full-car electrorheological suspension system via hardware-in-the-loop simulation. ASME J Dyn Measure Cont 122: 114-121. View
  13. Choi SB, Lee HK, Chang EG (2001) Field test results of a semi-active ER suspension system associated with skyhook controller. Mechatronics 11: 345-353. View
  14. Kuo WH, Lin YC, Wu TN, Guo J, Chen YN, et al. (2009) Study on the Controllable Characteristics of Electrorheological Valve Using Serial Multielectrode, Tamkang Journal of Science and Engineering 12: 351-358. View
  15. Choi SB, Choi YT, Chang EG, Han SJ, Kim CS (1998) Control characteristics of a continuously variable ER damper. Mechatronics 8: 143-161. View
  16. Sassi S, Cherif K, Thomas M (2003) On the Development of a Smart Damper Based on Electro-Rheological Technology. Smart Materials and Structures 12: 873-880. View
  17. Kuo WH, Wu TN, Guo J, Chiang MH, Chen YN (2006) Design and performance evaluation of a serial multi-electrode electrorheological damper. Journal of Sound and Vibration 292: 694-709. View
  18. Cherif K, Moalla S, Sassi S, Zarrouk H (2007) Electrorheological response of modified silica suspensions. J Eur Ceram Soc 27: 1199-1202. View
  19. Di K, Zhu Y, Yang X, Li C (2006) Electrorheological behavior of urea-doped mesoporous TiO2 suspensions. Colloids and Surfaces A: Physicochem. Eng. Aspects 280: 71-75. View
  20. Huang X, Wen W, Yang S, Sheng P (2006) Mechanisms of the giant electrorheological effect. Solid State Communications 139: 581-588. View
  21. Belza T, Pavlinek V, Saha P, Quadrat O (2007) Electrorheological properties of suspensions of silica nanoparticles modified by urea and N,Ndimethylformamide. Colloids and Surfaces A: Physicochem Eng Aspects 297: 142-146. View
  22. Zao XP, DuanX (2002) A new organic/ inorganic hybrid with high electrorheological activity. Mater Lett 54: 348-351. View
  23. Yoon DJ, KimYD (2006) Synthesis and electrorheological behavior of sterically stabilized polypyrrole-silica-methylcellulose nanocomposite suspension, J. Colloid Interface Sci 303: 573-578. View
  24. Galland GB, dos Santos JHZ, Stedile FC, Greco PP, Campani AD (2004) Ethylene homo- and copolymerization using (nBuCp)2ZrCl2 grafted on silica modified with different spacers. Journal of Molecular Catalysis A: Chemical 210: 149-156. View
  25. Ogawa K, Chemburu S, Lopez GP, Whitten DG, Schanze KS (2007) Conjugated Polyelectrolyte-Grafted Silica Microspheres. Langmuir 23: 4541-4548. View