
http://dx.doi.org/10.15344/2455-7412/2015/102
Abstract
A numerical procedure is developed for the management of solar energy in buildings using passive systems, which are based on Phase Change Materials (PCM). For the simulation of the phase change process, the concept of effective thermal capacity function is used, which is determined experimentally and then generalized using triangular functions. The developed procedure is applied along the typical year in the Athens area buildings for studying the effect of main PCM parameters, including the phase change temperature range, the phase change heat and the thickness, location and way of embodiment of PCM within buildings elements. It is found that energy savings up to 33% may be obtained along the Athens typical year by placing at the proper building location PCM layers with the right thermal properties. The conclusions of the study may be used, apart from the Athens area, to regions of similar climate and moreover, because of their generality, most of them may be useful to any climatic conditions.