Profile
International Journal of Gynecology & Clinical Practices Volume 2 (2015), Article ID 1:IJGCP-110, 8 pages
http://dx.doi.org/10.15344/2394-4986/2015/110
Review Article
Platinum-resistance and AKT Over-expression in Ovarian Cancer

Jens C. Hahne

Centre for Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom
Dr. Jens C. Hahne, Centre for Molecular Pathology, The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, United Kingdom, Tel.:+4402089156633; E-mail: jens.hahne@icr.ac.uk
13 February 2015; 28 April 2015; 30 April 2015
Hahne JC (2015) Platinum-resistance and AKT Over-expression in Ovarian Cancer. Int J Gynecol Clin Pract 2: 110. doi: http://dx.doi.org/10.15344/2394-4986/2015/110

References

  1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, et al. (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136: E359-386 [CrossRef] [Google Scholar] [PubMed]
  2. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60: 277-300 [CrossRef] [Google Scholar] [PubMed]
  3. Metzger-Filho O1, Moulin C, D'Hondt V (2010) First-line systemic treatment of ovarian cancer: a critical review of available evidence and expectations for future directions. Curr Opin Oncol 22: 513-520 [CrossRef] [Google Scholar] [PubMed]
  4. Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2: 489-501 [CrossRef] [Google Scholar] [PubMed]
  5. Domin J, Pages F, Volinia S, Rittenhouse SE, Zvelebil MJ, et al. (1997) Cloning of a human phosphoinositide 3-kinase with a C2 domain that displays reduced sensitivity to the inhibitor wortmannin. Biochem J 326: 139-147 [CrossRef] [Google Scholar] [PubMed]
  6. Saal LH, Holm K, Maurer M, Memeo L, Su T, et al. (2005) PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res 65: 2554-2559 [CrossRef] [Google Scholar] [PubMed]
  7. Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P (2000) Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 275: 992-998 [CrossRef] [Google Scholar] [PubMed]
  8. Kondo Y, Kanzawa T, Sawaya R, Kondo S (2005) The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 5: 726-734 [CrossRef] [Google Scholar] [PubMed]
  9. Roche S, Koegl M, Courtneidge SA (1994) The phosphatidylinositol 3-kinase alpha is required for DNA synthesis induced by some, but not all, growth factors. Proc Natl Acad Sci U S A 91: 9185-9189 [CrossRef] [Google Scholar] [PubMed]
  10. Wennström S, Hawkins P, Cooke F, Hara K, Yonezawa K, et al. (1994) Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 4: 385-393 [CrossRef] [Google Scholar] [PubMed]
  11. Yao R, Cooper GM (1996) Growth factor-dependent survival of rodent fibroblasts requires phosphatidylinositol 3-kinase but is independent of pp70S6K activity. Oncogene 13: 343-351 [Google Scholar] [PubMed]
  12. Toker A, Yoeli-Lerner M (2006) Akt signaling and cancer: surviving but not moving on. Cancer Res 66: 3963-3966 [CrossRef] [Google Scholar] [PubMed]
  13. Künstle G, Laine J, Pierron G, Kagami Si S, Nakajima H, et al. (2002) Identification of Akt association and oligomerization domains of the Akt kinase coactivator TCL1. Mol Cell Biol 22: 1513-1525 [CrossRef] [Google Scholar] [PubMed]
  14. Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9: 550-562 [CrossRef] [Google Scholar] [PubMed]
  15. Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, et al. (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30: 193- 204 [CrossRef] [Google Scholar] [PubMed]
  16. Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441: 424-430 [CrossRef] [Google Scholar] [PubMed]
  17. Diaz-Padilla I, Duran I, Clarke BA, Oza AM (2012) Biologic rationale and clinical activity of mTOR inhibitors in gynecological cancer. Cancer Treat Rev 38: 767-775 [CrossRef] [Google Scholar] [PubMed]
  18. Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) mTOR regulation of autophagy. FEBS Lett 584: 1287-1295 [CrossRef] [Google Scholar] [PubMed]
  19. Wang CW, Klionsky DJ (2003) The molecular mechanism of autophagy. Mol Med 9: 65-76 [Google Scholar] [PubMed]
  20. Santiskulvong C, Konecny GE, Fekete M, Chen KY, Karam A, et al. (2011) Dual targeting of phosphoinositide 3-kinase and mammalian target of rapamycin using NVP-BEZ235 as a novel therapeutic approach in human ovarian carcinoma. Clin Cancer Res 17: 2373-2384 [CrossRef] [Google Scholar] [PubMed]
  21. Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, et al. (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21: 99-102 [CrossRef] [Google Scholar] [PubMed]
  22. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB (2005) Exploiting the PI3K/ AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4: 988-1004 [CrossRef] [Google Scholar] [PubMed]
  23. Bellacosa A, Kumar CC, Di Cristofano A, Testa JR (2005) Activation of AKT kinases in cancer: implications for therapeutic targeting. Adv Cancer Res 94: 29-86 [CrossRef] [Google Scholar] [PubMed]
  24. Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129: 1261-1274 [CrossRef] [Google Scholar] [PubMed]
  25. Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7: 606- 619 [CrossRef] [Google Scholar] [PubMed]
  26. Kong D, Suzuki A, Zou TT, Sakurada A, Kemp LW, et al. (1997) PTEN1 is frequently mutated in primary endometrial carcinomas. Nat Genet 17: 143-144 [CrossRef] [Google Scholar] [PubMed]
  27. Minaguchi T, Yoshikawa H, Oda K, Ishino T, Yasugi T, et al. (2001) PTEN mutation located only outside exons 5, 6, and 7 is an independent predictor of favorable survival in endometrial carcinomas. Clin Cancer Res 7: 2636- 2642 [Google Scholar] [PubMed]
  28. Meier F, Schittek B, Busch S, Garbe C, Smalley K, et al. (2005) The RAS/ RAF/MEK/ERK and PI3K/AKT signaling pathways present molecular targets for the effective treatment of advanced melanoma. Front Biosci 10: 2986-3001 [CrossRef] [Google Scholar] [PubMed]
  29. Chang F, Lee JT, Navolanic PM, Steelman LS, Shelton JG, et al. (2003) Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 17: 590-603 [CrossRef] [Google Scholar] [PubMed]
  30. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, et al. (2003) Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17: 1263-1293 [CrossRef] [Google Scholar] [PubMed]
  31. Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PM, et al. (2003) Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ ERK pathway (Review). Int J Oncol 22: 469-480 [CrossRef] [Google Scholar] [PubMed]
  32. Steelman LS, Chappell WH, Abrams SL, Kempf RC, Long J, et al. (2011) Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY) 3: 192-222 [CrossRef] [Google Scholar] [PubMed]
  33. Frémin C, Meloche S (2010) From basic research to clinical development of MEK1/2 inhibitors for cancer therapy. J Hematol Oncol 3: 8 [CrossRef] [Google Scholar] [PubMed]
  34. Huang W, Kessler DS, Erikson RL (1995) Biochemical and biological analysis of Mek1 phosphorylation site mutants. Mol Biol Cell 6: 237-245 [CrossRef] [Google Scholar] [PubMed]
  35. Tanoue T, Maeda R, Adachi M, Nishida E (2001) Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J 20: 466-479 [CrossRef] [Google Scholar] [PubMed]
  36. Crews CM, Alessandrini A, Erikson RL (1992) The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258: 478-480 [CrossRef] [Google Scholar] [PubMed]
  37. Ebisuya M, Kondoh K, Nishida E (2005) The duration, magnitude and compartmentalization of ERK MAP kinase activity: mechanisms for providing signaling specificity. J Cell Sci 118: 2997-3002 [CrossRef] [Google Scholar] [PubMed]
  38. Conway AM, Rakhit S, Pyne S, Pyne NJ (1999) Platelet-derived-growthfactor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochem J 337 : 171-177 [CrossRef] [Google Scholar] [PubMed]
  39. Cross DA, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS, et al. (1994) The inhibition of glycogen synthase kinase-3 by insulin or insulinlike growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J 303: 21-26 [CrossRef] [Google Scholar] [PubMed]
  40. Von Willebrand M, Jascur T, Bonnefoy-Bérard N, Yano H, Altman A, et al. (1996) Inhibition of phosphatidylinositol 3-kinase blocks T cell antigen receptor/CD3-induced activation of the mitogen-activated kinase Erk2. Eur J Biochem 235: 828-835 [CrossRef] [Google Scholar] [PubMed]
  41. Ferby IM, Waga I, Hoshino M, Kume K, Shimizu T (1996) Wortmannin inhibits mitogen-activated protein kinase activation by platelet-activating factor through a mechanism independent of p85/p110-type phosphatidylinositol 3-kinase. J Biol Chem 271: 11684-11688 [CrossRef] [Google Scholar] [PubMed]
  42. Furuta S, Hidaka E, Ogata A, Yokota S, Kamata T (2004) Ras is involved in the negative control of autophagy through the class I PI3-kinase. Oncogene 23: 3898-3904 [CrossRef] [Google Scholar] [PubMed]
  43. Castellano E, Downward J (2011) RAS Interaction with PI3K: More Than Just Another Effector Pathway. Genes Cancer 2: 261-274 [CrossRef] [Google Scholar] [PubMed]
  44. Rommel C, Clarke BA, Zimmermann S, Nuñez L, Rossman R, et al. (1999) Differentiation stage-specific inhibition of the Raf-MEK-ERK pathway by Akt. Science 286: 1738-1741 [CrossRef] [Google Scholar] [PubMed]
  45. Zimmermann S, Moelling K (1999) Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286: 1741-1744 [CrossRef] [Google Scholar] [PubMed]
  46. Ma L, Chen Z, Erdjument-Bromage H, Tempst P, Pandolfi PP (2005) Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121: 179-193 [CrossRef] [Google Scholar] [PubMed]
  47. Sunayama J, Matsuda K, Sato A, Tachibana K, Suzuki K, et al. (2010) Crosstalk between the PI3K/mTOR and MEK/ERK pathways involved in the maintenance of self-renewal and tumorigenicity of glioblastoma stemlike cells. Stem Cells 28: 1930-1939 [CrossRef] [Google Scholar] [PubMed]
  48. Shi Y, Hsu JH, Hu L, Gera J, Lichtenstein A (2002) Signal pathways involved in activation of p70S6K and phosphorylation of 4E-BP1 following exposure of multiple myeloma tumor cells to interleukin-6. J Biol Chem 277: 15712-15720 [CrossRef] [Google Scholar] [PubMed]
  49. Harrington LS, Findlay GM, Gray A, Tolkacheva T, Wigfield S, et al. (2004) The TSC1-2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166: 213-223 [CrossRef] [Google Scholar] [PubMed]
  50. Samuels Y, Velculescu VE (2004) Oncogenic mutations of PIK3CA in human cancers. Cell Cycle 3: 1221-1224 [CrossRef] [Google Scholar] [PubMed]
  51. Kurman RJ, Shih IeM (2011) Molecular pathogenesis and extraovarian origin of epithelial ovarian cancer--shifting the paradigm. Hum Pathol 42: 918-931 [CrossRef] [Google Scholar] [PubMed]
  52. Vazquez F, Sellers WR (2000) The PTEN tumor suppressor protein: an antagonist of phosphoinositide 3-kinase signaling. Biochim Biophys Acta 1470: M21-35 [CrossRef] [Google Scholar] [PubMed]
  53. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL (1998) The PTEN/ MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci U S A 95: 15587-15591 [CrossRef] [Google Scholar] [PubMed]
  54. Leslie NR, Gray A, Pass I, Orchiston EA, Downes CP (2000) Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signalling pathways downstream of phosphoinositide 3-kinase. Biochem J 346 Pt 3: 827-833 [CrossRef] [Google Scholar] [PubMed]
  55. Dahia PL, Aguiar RC, Alberta J, Kum JB, Caron S, et al. (1999) PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanismsin haematological malignancies. Hum Mol Genet 8: 185-193 [CrossRef] [Google Scholar] [PubMed]
  56. Hashiguchi Y, Tsuda H, Inoue T, Berkowitz RS, Mok SC (2006) PTEN expression in clear cell adenocarcinoma of the ovary. Gynecol Oncol 101: 71-75 [CrossRef] [Google Scholar] [PubMed]
  57. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, et al. (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448: 439-444 [CrossRef] [Google Scholar] [PubMed]
  58. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Montalto G, et al. (2012) Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/ Akt/mTOR cascades which alter therapy response. Oncotarget 3: 954-987 [CrossRef] [Google Scholar] [PubMed]
  59. Ulkü AS, Schäfer R, Der CJ (2003) Essential role of Raf in Ras transformation and deregulation of matrix metalloproteinase expression in ovarian epithelial cells. Mol Cancer Res 1: 1077-1088 [Google Scholar] [PubMed]
  60. Taylor V, Wong M, Brandts C, Reilly L, Dean NM, et al. (2000) 5' phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol 20: 6860-6871 [CrossRef] [Google Scholar] [PubMed]
  61. Fan Y, Wang L, Han X, Liu X, Ma H (2015) Rab25 is responsible for phosphoinositide 3-kinase/AKT‑mediated cisplatin resistance in human epithelial ovarian cancer cells. Mol Med Rep 11: 2173-2178 [CrossRef] [Google Scholar] [PubMed]
  62. Wang T, Li Y, Tuerhanjiang A1, Wang W1, Wu Z1, et al. (2014) Twist2 contributes to cisplatin-resistance of ovarian cancer through the AKT/GSK- 3β signaling pathway. Oncol Lett 7: 1102-1108 [CrossRef] [Google Scholar] [PubMed]
  63. Wang Y, Tu Q, Yan W, Xiao D, Zeng Z, et al. (2015) CXC195 suppresses proliferation and inflammatory response in LPS-induced human hepatocellular carcinoma cells via regulating TLR4-MyD88-TAK1-mediated NF-κB and MAPK pathway. Biochem Biophys Res Commun 456: 373-379 [CrossRef] [Google Scholar] [PubMed]
  64. Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, et al. (2005) Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res 11: 2875-2878 [CrossRef] [Google Scholar] [PubMed]
  65. Chen R, Yang Q, Lee JD (2012) BMK1 kinase suppresses epithelialmesenchymal transition through the Akt/GSK3β signaling pathway. Cancer Res 72: 1579-1587 [CrossRef] [Google Scholar] [PubMed]
  66. Stewart DJ (2007) Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 63: 12-31 [CrossRef] [Google Scholar] [PubMed]
  67. Lee S, Choi EJ, Jin C, Kim DH (2005) Activation of PI3K/Akt pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol 97: 26-34 [CrossRef] [Google Scholar] [PubMed]
  68. Gagnon V, Mathieu I, Sexton E, Leblanc K, Asselin E (2004) AKT involvement in cisplatin chemoresistance of human uterine cancer cells. Gynecol Oncol 94: 785-795 [CrossRef] [Google Scholar] [PubMed]
  69. Mondesire WH, Jian W, Zhang H, Ensor J, Hung MC, et al. (2004) Targeting mammalian target of rapamycin synergistically enhances chemotherapyinduced cytotoxicity in breast cancer cells. Clin Cancer Res 10: 7031-7042 [CrossRef] [Google Scholar] [PubMed]
  70. Engel JB, Schönhals T, Häusler S, Krockenberger M, Schmidt M, et al. (2011) Induction of programmed cell death by inhibition of AKT with the alkylphosphocholine perifosine in in vitro models of platinum sensitive and resistant ovarian cancers. Arch Gynecol Obstet 283: 603-610 [CrossRef] [Google Scholar] [PubMed]
  71. Benedetti V, Perego P, Luca Beretta G, Corna E, Tinelli S, et al. (2008) Modulation of survival pathways in ovarian carcinoma cell lines resistant to platinum compounds. Mol Cancer Ther 7: 679-687 [CrossRef] [Google Scholar] [PubMed]
  72. Hahne JC, Honig A, Meyer SR, Gambaryan S, Walter U, et al. (2012) Downregulation of AKT reverses platinum resistance of human ovarian cancers in vitro. Oncol Rep 28: 2023-2028 [CrossRef] [Google Scholar] [PubMed]
  73. Hahne JC, Meyer SR, Gambaryan S, Walter U, Dietl J, et al. (2013) Immune escape of AKT overexpressing ovarian cancer cells. Int J Oncol 42: 1630-1635 [CrossRef] [Google Scholar] [PubMed]
  74. Honig A, Hahne JC, Meyer S, Kranke P, Häusler S, et al. (2012) PI3K inhibitor D-116883 is effective in in vitro models of ovarian cancer. Anticancer Res 32: 2035-2041 [Google Scholar] [PubMed]
  75. Eckstein N (2011) Platinum resistance in breast and ovarian cancer cell lines. J Exp Clin Cancer Res 30: 91 [CrossRef] [Google Scholar] [PubMed]
  76. Cheng JQ, Lindsley CW, Cheng GZ, Yang H, Nicosia SV (2005) The Akt/ PKB pathway: molecular target for cancer drug discovery. Oncogene 24: 7482-7492 [CrossRef] [Google Scholar] [PubMed]
  77. Hövelmann S, Beckers TL, Schmidt M (2004) Molecular alterations in apoptotic pathways after PKB/Akt-mediated chemoresistance in NCI H460 cells. Br J Cancer 90: 2370-2377 [CrossRef] [Google Scholar] [PubMed]
  78. Westfall SD, Skinner MK (2005) Inhibition of phosphatidylinositol 3-kinase sensitizes ovarian cancer cells to carboplatin and allows adjunct chemotherapy treatment. Mol Cancer Ther 4: 1764-1771 [CrossRef] [Google Scholar] [PubMed]
  79. Testa JR, Bellacosa A (2001) AKT plays a central role in tumorigenesis. Proc Natl Acad Sci U S A 98: 10983-10985 [CrossRef] [Google Scholar] [PubMed]
  80. Nicholson KM, Anderson NG (2002) The protein kinase B/Akt signalling pathway in human malignancy. Cell Signal 14: 381-395 [CrossRef] [Google Scholar] [PubMed]
  81. Dobbin ZC, Landen CN (2013) The Importance of the PI3K/AKT/MTOR Pathway in the Progression of Ovarian Cancer. Int J Mol Sci 14: 8213-8227 [CrossRef] [Google Scholar] [PubMed]
  82. Pink RC, Samuel P, Massa D, Caley DP, Brooks SA, et al. (2015) The passenger strand, miR-21-3p, plays a role in mediating cisplatin resistance in ovarian cancer cells. Gynecol Oncol 137: 143-151 [CrossRef] [Google Scholar] [PubMed]
  83. Zhou Y, Chen Q, Qin R, Zhang K, Li H (2014) MicroRNA-449a reduces cell survival and enhances cisplatin-induced cytotoxicity via downregulation of NOTCH1 in ovarian cancer cells. Tumour Biol 35: 12369-12378 [CrossRef] [Google Scholar] [PubMed]
  84. Chen S, Chen X, Xiu YL, Sun KX, Zong ZH, et al. (2014) microRNA 490-3P enhances the drug-resistance of human ovarian cancer cells. J Ovarian Res 7: 84 [CrossRef] [Google Scholar] [PubMed]
  85. Yan M, Chen C, Gong W, Yin Z, Zhou L, et al. (2015) miR-21-3p regulates cardiac hypertrophic response by targeting histone deacetylase-8. Cardiovasc Res 105: 340-352 [CrossRef] [Google Scholar] [PubMed]
  86. Osanto S, Qin Y, Buermans HP, Berkers J, Lerut E, et al. (2012) Genomewide microRNA expression analysis of clear cell renal cell carcinoma by next generation deep sequencing. PLoS One 7: e38298 [CrossRef] [Google Scholar] [PubMed]
  87. Huang Y, Dai Y, Yang J, Chen T, Yin Y, et al. (2009) Microarray analysis of microRNA expression in renal clear cell carcinoma. Eur J Surg Oncol 35: 1119-1123 [CrossRef] [Google Scholar] [PubMed]
  88. Chow TF, Youssef YM, Lianidou E, Romaschin AD, Honey RJ, et al. (2010) Differential expression profiling of microRNAs and their potential involvement in renal cell carcinoma pathogenesis. Clin Biochem 43: 150- 158 [CrossRef] [Google Scholar] [PubMed]
  89. Youssef YM, White NM, Grigull J, Krizova A, Samy C, et al. (2011) Accurate molecular classification of kidney cancer subtypes using microRNA signature. Eur Urol 59: 721-730 [CrossRef] [Google Scholar] [PubMed]
  90. Yao Y, Ma J, Xue Y, Wang P, Li Z, et al. (2015) MiR-449a exerts tumorsuppressive functions in human glioblastoma by targeting Myc-associated zinc-finger protein. Mol Oncol 9: 640-656 [CrossRef] [Google Scholar] [PubMed]
  91. Hales EC, Taub JW, Matherly LH (2014) New insights into Notch1 regulation of the PI3K-AKT-mTOR1 signaling axis: targeted therapy of γ-secretase inhibitor resistant T-cell acute lymphoblastic leukemia. Cell Signal 26: 149- 161 [CrossRef] [Google Scholar] [PubMed]
  92. Cheng Q, Yi B, Wang A, Jiang X (2013) Exploring and exploiting the fundamental role of microRNAs in tumor pathogenesis. Onco Targets Ther 6: 1675-1684 [CrossRef] [Google Scholar] [PubMed]
  93. Beaufort CM, Helmijr JC, Piskorz AM, Hoogstraat M, Ruigrok-Ritstier K, et al. (2014) Ovarian cancer cell line panel (OCCP): clinical importance of in vitro morphological subtypes. PLoS One 9: e103988 [CrossRef] [Google Scholar] [PubMed]
  94. Behrens BC, Hamilton TC, Masuda H, Grotzinger KR, Whang-Peng J, et al. (1987) Characterization of a cis-diamminedichloroplatinum(II)-resistant human ovarian cancer cell line and its use in evaluation of platinum analogues. Cancer Res 47: 414-418 [Google Scholar] [PubMed]
  95. Hahne JC, Kurz A, Meyer SR, Dietl J, Engel JB, et al. (2015) Anti-tumour activity of phosphoinositide-3-kinase antagonist AEZS-126 in models of ovarian cancer. Arch Gynecol Obstet 291: 131-141 [CrossRef] [Google Scholar] [PubMed]
  96. Ali AY, Kim JY, Pelletier JF, Vanderhyden BC, Bachvarov DR, et al. (2014) Akt confers cisplatin chemoresistance in human gynecological carcinoma cells by modulating PPM1D stability. Mol Carcinog [CrossRef] [Google Scholar] [PubMed]
  97. Bao L, Jaramillo MC, Zhang Z, Zheng Y, Yao M, et al. (2015) Induction of autophagy contributes to cisplatin resistance in human ovarian cancer cells. Mol Med Rep 11: 91-98 [CrossRef] [Google Scholar] [PubMed]
  98. Zhao JX, Liu H, Lv J, Yang XJ (2014) Wortmannin enhances cisplatininduced apoptosis in human ovarian cancer cells in vitro. Eur Rev Med Pharmacol Sci 18: 2428-2434 [Google Scholar] [PubMed]
  99. Liu G, Du P, Zhang Z (2014) Myeloid Differentiation Factor 88 Promotes Cisplatin Chemoresistance in Ovarian Cancer. Cell Biochem Biophys 71: 963-969 [CrossRef] [Google Scholar] [PubMed]
  100. He G, Kuang J, Khokhar AR, Siddik ZH (2011) The impact of S- and G2-checkpoint response on the fidelity of G1-arrest by cisplatin and its comparison to a non-cross-resistant platinum(IV) analog. Gynecol Oncol 122: 402-409 [CrossRef] [Google Scholar] [PubMed]
  101. Hayakawa J, Ohmichi M, Kurachi H, Kanda Y, Hisamoto K, et al. (2000) Inhibition of BAD phosphorylation either at serine 112 via extracellular signal-regulated protein kinase cascade or at serine 136 via Akt cascade sensitizes human ovarian cancer cells to cisplatin. Cancer Res 60: 5988- 5994 [Google Scholar] [PubMed]
  102. Betito S, Cuvillier O (2006) Regulation by sphingosine 1-phosphate of Bax and Bad activities during apoptosis in a MEK-dependent manner. Biochem Biophys Res Commun 340: 1273-1277 [CrossRef] [Google Scholar] [PubMed]
  103. Yang X, Fraser M, Moll UM, Basak A, Tsang BK (2006) Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspasedependent mitochondrial death pathway. Cancer Res 66: 3126-3136 [CrossRef] [Google Scholar] [PubMed]
  104. Fraser M, Bai T, Tsang BK (2008) Akt promotes cisplatin resistance in human ovarian cancer cells through inhibition of p53 phosphorylation and nuclear function. Int J Cancer 122: 534-546 [CrossRef] [Google Scholar] [PubMed]
  105. Arafa el-SA, Zhu Q, Barakat BM, Wani G, Zhao Q, et al. (2009) Tangeretin sensitizes cisplatin-resistant human ovarian cancer cells through downregulation of phosphoinositide 3-kinase/Akt signaling pathway. Cancer Res 69: 8910-8917 [CrossRef] [Google Scholar] [PubMed]
  106. Kolasa IK, Rembiszewska A, Felisiak A, Ziolkowska-Seta I, Murawska M, et al. (2009) PIK3CA amplification associates with resistance to chemotherapy in ovarian cancer patients. Cancer Biol Ther 8: 21-26 [CrossRef] [Google Scholar] [PubMed]
  107. Woenckhaus J, Steger K, Sturm K, Münstedt K, Franke FE, et al. (2007) Prognostic value of PIK3CA and phosphorylated AKT expression in ovarian cancer. Virchows Arch 450: 387-395 [CrossRef] [Google Scholar] [PubMed]
  108. Sasano T, Mabuchi S, Kuroda H, Kawano M, Matsumoto Y, et al. (2015) Preclinical Efficacy for AKT Targeting in Clear Cell Carcinoma of the Ovary. Mol Cancer Res 13: 795-806 [CrossRef] [Google Scholar] [PubMed]
  109. Marsh Rde W, Rocha Lima CM, Levy DE, Mitchell EP, Rowland KM Jr, et al. (2007) A phase II trial of perifosine in locally advanced, unresectable, or metastatic pancreatic adenocarcinoma. Am J Clin Oncol 30: 26-31 [CrossRef] [Google Scholar] [PubMed]
  110. Leighl NB, Dent S, Clemons M, Vandenberg TA, Tozer R, et al. (2008) A Phase 2 study of perifosine in advanced or metastatic breast cancer. Breast Cancer Res Treat 108: 87-92 [CrossRef] [Google Scholar] [PubMed]
  111. Snyder EL, Bailey D, Shipitsin M, Polyak K, Loda M (2009) Identification of CD44v6(+)/CD24- breast carcinoma cells in primary human tumors by quantum dot-conjugated antibodies. Lab Invest 89: 857-866 [CrossRef] [Google Scholar] [PubMed]
  112. Argiris A, Cohen E, Karrison T, Esparaz B, Mauer A, et al. (2006) A phase II trial of perifosine, an oral alkylphospholipid, in recurrent or metastatic head and neck cancer. Cancer Biol Ther 5: 766-770 [CrossRef] [Google Scholar] [PubMed]
  113. Knowling M, Blackstein M, Tozer R, Bramwell V, Dancey J, et al. (2006) A phase II study of perifosine (D-21226) in patients with previously untreated metastatic or locally advanced soft tissue sarcoma: A National Cancer Institute of Canada Clinical Trials Group trial. Invest New Drugs 24: 435- 439 [CrossRef] [Google Scholar] [PubMed]
  114. Posadas EM, Gulley J, Arlen PM, Trout A, Parnes HL, et al. (2005) A phase II study of perifosine in androgen independent prostate cancer. Cancer Biol Ther 4: 1133-1137 [CrossRef] [Google Scholar] [PubMed]
  115. Ernst DS, Eisenhauer E, Wainman N, Davis M, Lohmann R, et al. (2005) Phase II study of perifosine in previously untreated patients with metastatic melanoma. Invest New Drugs 23: 569-575 [CrossRef] [Google Scholar] [PubMed]
  116. Vink SR, Schellens JH, Beijnen JH, Sindermann H, Engel J, et al. (2006) Phase I and pharmacokinetic study of combined treatment with perifosine and radiation in patients with advanced solid tumours. Radiother Oncol 80: 207-213 [CrossRef] [Google Scholar] [PubMed]
  117. Caligiuri MA (2008) Human natural killer cells. Blood 112: 461-469 [CrossRef] [PubMed]
  118. Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, et al. (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331: 44-49 [CrossRef] [Google Scholar] [PubMed]
  119. Lanier LL (2008) Up on the tightrope: natural killer cell activation and inhibition. Nat Immunol 9: 495-502 [CrossRef] [Google Scholar] [PubMed]
  120. Moretta L, Biassoni R, Bottino C, Mingari MC, Moretta A (2000) Human NKcell receptors. Immunol Today 21: 420-422 [CrossRef] [Google Scholar] [PubMed]
  121. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23: 225-274 [CrossRef] [Google Scholar] [PubMed]
  122. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3: 991-998 [CrossRef] [Google Scholar] [PubMed]
  123. Orr MT, Lanier LL (2010) Natural killer cell education and tolerance. Cell 142: 847-856 [CrossRef] [Google Scholar] [PubMed]
  124. Smyth MJ, Dunn GP, Schreiber RD (2006) Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90: 1-50 [CrossRef] [Google Scholar] [PubMed]
  125. Zhang Y, Wang X, Yang H, Liu H, Lu Y, et al. (2013) Kinase AKT controls innate immune cell development and function. Immunology 140: 143-152 [CrossRef] [Google Scholar] [PubMed]
  126. Hawkins PT, Stephens LR (2015) PI3K signalling in inflammation. Biochim Biophys Acta 1851: 882-897 [CrossRef] [Google Scholar] [PubMed]
  127. Soliman GA (2013) The role of mechanistic target of rapamycin (mTOR) complexes signaling in the immune responses. Nutrients 5: 2231-2257 [CrossRef] [Google Scholar] [PubMed]
  128. Dituri F, Mazzocca A, Giannelli G, Antonaci S (2011) PI3K functions in cancer progression, anticancer immunity and immune evasion by tumors. Clin Dev Immunol 2011: 947858 [CrossRef] [Google Scholar] [PubMed]
  129. Bhoopathi P, Quinn BA, Gui Q, Shen XN, Grossman SR, et al. (2014) Pancreatic cancer-specific cell death induced in vivo by cytoplasmicdelivered polyinosine-polycytidylic acid. Cancer Res 74: 6224-6235 [CrossRef] [Google Scholar] [PubMed]
  130. Engel JB, Honig A, Kapp M, Hahne JC, Meyer SR, et al. (2014) Mechanisms of tumor immune escape in triple-negative breast cancers (TNBC) with and without mutated BRCA 1. Arch Gynecol Obstet 289: 141-147 [CrossRef] [Google Scholar] [PubMed]
  131. Noh KH, Kang TH, Kim JH, Pai SI, Lin KY, et al. (2009) Activation of Akt as a mechanism for tumor immune evasion. Mol Ther 17: 439-447 [CrossRef] [Google Scholar] [PubMed]
  132. Bellucci R, Nguyen HN, Martin A, Heinrichs S, Schinzel AC, et al. (2012) Tyrosine kinase pathways modulate tumor susceptibility to natural killer cells. J Clin Invest 122: 2369-2383 [CrossRef] [Google Scholar] [PubMed]
  133. Boutet P, Agüera-González S, Atkinson S, Pennington CJ, Edwards DR, et al. (2009) Cutting edge: the metalloproteinase ADAM17/TNF-alphaconverting enzyme regulates proteolytic shedding of the MHC class I-related chain B protein. J Immunol 182: 49-53 [CrossRef] [PubMed]
  134. Waldhauer I, Goehlsdorf D, Gieseke F, Weinschenk T, Wittenbrink M, et al. (2008) Tumor-associated MICA is shed by ADAM proteases. Cancer Res 68: 6368-6376 [CrossRef] [Google Scholar] [PubMed]
  135. Okita R, Mougiakakos D, Ando T, Mao Y, Sarhan D, et al. (2012) HER2/ HER3 signaling regulates NK cell-mediated cytotoxicity via MHC class I chain-related molecule A and B expression in human breast cancer cell lines. J Immunol 188: 2136-2145 [CrossRef] [Google Scholar] [PubMed]
  136. Altomare DA, Wang HQ, Skele KL, De Rienzo A, Klein-Szanto AJ, et al. (2004) AKT and mTOR phosphorylation is frequently detected in ovarian cancer and can be targeted to disrupt ovarian tumor cell growth. Oncogene 23: 5853-5857 [CrossRef] [Google Scholar] [PubMed]
  137. Nakayama K, Nakayama N, Kurman RJ, Cope L, Pohl G, et al. (2006) Sequence mutations and amplification of PIK3CA and AKT2 genes in purified ovarian serous neoplasms. Cancer Biol Ther 5: 779-785 [CrossRef] [Google Scholar] [PubMed]
  138. Campbell IG, Russell SE, Choong DY, Montgomery KG, Ciavarella ML, et al. (2004) Mutation of the PIK3CA gene in ovarian and breast cancer. Cancer Res 64: 7678-7681 [CrossRef] [Google Scholar] [PubMed]
  139. Kuo KT, Mao TL, Jones S, Veras E, Ayhan A, et al. (2009) Frequent activating mutations of PIK3CA in ovarian clear cell carcinoma. Am J Pathol 174: 1597-1601 [CrossRef] [Google Scholar] [PubMed]
  140. Matulonis UA, Hirsch M, Palescandolo E, Kim E, Liu J, et al. (2011) High throughput interrogation of somatic mutations in high grade serous cancer of the ovary. PLoS One 6: e24433 [CrossRef] [Google Scholar] [PubMed]