International Journal of Computer & Software Engineering Volume 1 (2016), Article ID 1:IJCSE-103, 8 pages
Research Article
Development and Preliminary Tests of a Crop Monitoring Mobile Lab Based on a Combined use of Optical Sensors

Daniela D’Auria1, Gianluca Ristorto1, Fabio Persia2*, Renato Vidoni1 and Fabrizio Mazzetto1

1Faculty of Science and Technology, Free University of Bozen, Italy
2Faculty of Computer Science, Free University of Bozen, Italy
Dr. Fabio Persia, Faculty of Computer Science, Free University of Bozen, Italy; E-mail:
27 January 2016; 08 June 2016; 10 June 2016
D’Auria D, Ristorto G, Persia F, Vidoni R, Mazzetto F (2016) Reversible Data Hiding Based on Image Interpolation with a Secret Message Reduction Strategy. Int J Comput Softw Eng 1: 103. doi:


  1. Bietresato M, Vidoni R, Gasparetto A, Mazzetto F (2015) Design and first tests of a vision system on a tele-operated vehicle for monitoring the canopy vigour status in orchards. Near Surface Geoscience. View
  2. Bietresato M, Carabin G, Vidoni R, Gasparetto A, Mazzetto F (2016) Evaluation of a lidar-based 3d-stereoscopic vision system for cropmonitoring applications. Comput Electron Agr 124: 1-13. View
  3. Lee K, Ehsani R, Castle W (2010) A laser scanning system for estimating wind velocity reduction through tree windbreaks. J Comput Electron Agr 73: 1-6. View
  4. Martin-Sanz A, Caminero C, Jing R, Flavell AJ, Perez de la Vega M (2011) Genetic diversity among spanish pea (pisum sativum l.) landraces, pea cultivars and the world pisum sp. core collection assessed by retrotransposon-based insertion polymorphisms (rbips). Spanish J Agr Res 9: 166-178. View
  5. Rosell JR, Sanz R (2012) A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput Electron Agri 81: 124-141. View
  6. Sanz R, Rosell JR, Lorens J, Gil E, Planas S (2013) Relationship between tree row lidar-volume and leaf area density for fruit orchards and vineyards obtained with a lidar 3d dynamic measurement system. Agr Forest Meteorol 172: 153-162. View
  7. Newnham G, Siggins A, Blanchi R, Culvenor D, Leonard J (2012) Exploiting three dimensional vegetation structure to map wildland extent. Remote Sens Environ 123: 155-162. View
  8. Rossel Polo J, Sanz R, Lorens J, Arn J, Escol A, et al.(2009) A tractormounted scanning lidar for the non-destructive measurement of vegetative volume and surface area of tree row plantations: A comparison with conventional destructive measurements. Biosyst Eng 102: 128-134. View
  9. Keightley K, Bawden(2010) 3D volumetric modeling of grapevine biomass using tripod lidar. Comput Electron Agr 74: 305-312. View
  10. Bucksch A, Fleck S (2009) Automated detection of branch dimensions in woody skeletons of leafless fruit tree canopies. SilviLaser. View
  11. Raumonen P, Kaasalainen M, kerblom M, Kaasalainen S, Kaartinen H, et al. ( 2013) Fast automatic precision tree models from terrestrial laser scanner data. Remote Sensing 5: 491-520. View
  12. Cote J-F, Widlowski J-L, Fournier R, Verstraete M (2009) The structural and radiative consistency of three-dimensional tree reconstructions from terrestrial lidar. Remote Sens Environ 113: 1067-1081. View
  13. Moorthy K, Babu S, Satheesh S (2007) Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station-part 1: microphysical and optical properties. Annal Geophy 25: 2293–2308. View
  14. Fieber K, Davenport J, Ferryman J, Gurney R, Tanase M, et al. (2013) Waveform and discrete lidar effective lai estimates: sensitivity analysis. SilviLaser. View
  15. Walklate P, Cross J, Richardson G, Murray R, Baker D (2002) Comparison of different spray volume deposition models using lidar measurements of apple orchards. Biosys Eng 82: 253-267. View
  16. Auat Cheein F, Guivant J (2014) Slam-based incremental convex hull processing approach for treetop volume estimation. Comput Electron Agr 102: 19-30. View
  17. Mendez B, Vivoni L, Robles-Morua A, Mascaro G, Yepez E (2014) A modeling approach reveals differences in evapotranspiration and its partitioning in two semiarid ecosystems in northwest mexico. Water Resour Res 50: 322-932. View
  18. Jaeger-Hansen C, Dhring K (2012) Electric agricultural robot with multilayer- control. Int Conf Agr Eng. View
  19. Rosell J, Llorens J, Sanz R, Arn J, Ribes-Dasi M, et al. (2009) Obtaining the three-dimensional structure of tree orchards from remote 2d terrestrial lidar scanning. Agricult Forest Meteorol 149: 1505-1515. View
  20. Calcante A, Mena A, Mazzetto F (2012) Evaluation of “ground sensing” optical sensors for diagnosis of plasmopara viticola on vines. Spanish J Agr Res 10: 619–630. View
  21. Mazzetto F, Calcante A, Mena A, Vercesi A (2010) Integration of optical and analogue sensors for monitoring canopy health and vigour in precision viticulture. Precision Agr 11: 636–649. View
  22. Povh F, de Paula G, Anjos W (2014) Optical sensors applied in agricultural crops. Optical Sensors - New Development Practical Applications. View
  23. Fortes M, Prieto H, Garcia-Martin A, Cordoba A, Martinez L, et al. (2015) Using ndvi and guided sampling to develop yield prediction maps of processing tomato crop. Spanish J Agr Res 13: 2171–9292. View
  24. Mazzetto F, Calcante A, Mena A, Vercesi A (2009) Development and first tests of a mobile lab combining optical and analogical sensors for crop monitoring in precision viticulture. Precision Agr 9: 31-38. View
  25. Romaneckas K, Zinkevicius R, Steponavicius D, Maziliauskas A, Butkus V (2015) Principles of precision agriculture in on-farm spring wheat fertilization experiment. Eng Rural Develop. View
  26. Albanese M, Pugliese A, Subrahmanian V (2013) Fast activity detection: Indexing for temporal stochastic automaton-based activity models. Knowl Data Eng IEEE Transa 25: 360-373. View
  27. D'Auria D, Persia F (2014) A framework for real-time evaluation of medical doctors performances while using a cricothyrotomy simulator. In Data Manag Tech App Springer 182-198. View
  28. D’Auria D, Persia F (2014) Automatic evaluation of medical doctors’ performances while using a cricothyrotomy simulator. In Inform Reuse Integrat (IRI). IEEE 15th Int Conf IEEE 514–519. View
  29. D'Auria D, Persia F (2014) Discovering expected activities in medical context scientific databases. Proceed 3rd Int Conf Data Manag Tech App 446–453. View
  30. Persia F, D’Auria D (2014) An application for finding expected activities in medical context scientific databases. 77–88. View
  31. Rouse J, Haas R, Schell D, Deering JA (1974) Monitoring vegetation systems in the great plains with erts. Third Earth Resourc Tech Satell Syp 1: 309-317. View
  32. Barnes E, Clarke T, Richards S, Colaizzi J, Haberland PD, et al. (2000) Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. The 5th Int Conf Precision Agr 1-15. View
  33. Ristorto G, Mazzetto F, Guglieri G, Quagliotti F (2015) Monitoring performances and cost estimation of multirotor unmanned aerial systems in precision farming. Unmanned Aircraft Systems 502-509. View
  34. Polo R, Sanz R, Llorens J, Arn J, Escol ARM, et al. (2009) A tractor-mounted scanning lidar for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosyst Eng 102: 128-134. View
  35. Moscato V, Picariello A, Persia F, Penta A (2009) A system for automatic image categorization. in Semant Comput ICSC’09. IEEE Int Conf 624-629. View