Profile
International Journal of Clinical Research & Trials Volume 5 (2020), Article ID 5:IJCRT-147, 8 pages
https://doi.org/10.15344/2456-8007/2020/147
Review Article
Insights into Potential Mechanisms of Injury and Treatment Targets in COVID-19, SARS-Cov-2 Infection

Angelina Zhyvotovska#, Denis Yusupov#, Robert Foronjy, Mohammed Nakeshbandi, Samy I McFarlane* and Moro Salifu

Department of Medicine, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, New York, USA**
Proff. Samy I. McFarlane, College of Medicine, Department of Medicine, Division of Endocrinology, Internal Medicine Residency Program Director, State University of New York, Downstate Medical Center, 450 Clarkson Ave, Box 50, Brooklyn, New York, USA. Phone 718-270-6707, Fax 718- 270-4488; E-mail: smcfarlane@downstate.edu
#Both authors equally contributed to this manuscript.
**Designated as the COVID-19 only hospital in New York City, NY during the pandemic.
13 May 2020; 06 June 2020; 08 June 2020
Zhyvotovska A, Yusupov D, Foronjy R, Nakeshbandi M, McFarlane SI, et al. (2020) Insights into Potential Mechanisms of Injury and Treatment Targets in COVID-19, SARS-Cov-2 Infection. Int J Clin Res Trials 5: 147. doi: https://doi.org/10.15344/2456-8007/2020/147

References

  1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, et al. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 181: 271-280. [CrossRef] [Google Scholar] [PubMed]
  2. Guo J, Huang Z, Lin L, Lv J (2020) Coronavirus Disease 2019 (COVID-19) and Cardiovascular Disease: A Viewpoint on the Potential Influence of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers on Onset and Severity of Severe Acute Respiratory Syndrome Coronavirus 2 Infection. J Am Heart Assoc 9: e016219. [CrossRef] [Google Scholar] [PubMed]
  3. Pan XW, Xu D, Zhang H, Zhou W, Wang LH, et al. (2020) Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. [CrossRef] [Google Scholar] [PubMed]
  4. Soler MJ, Wysocki J, Batlle D (2013) ACE2 alterations in kidney disease. Nephrol Dial Transplant 28: 2687-2697. [CrossRef] [PubMed]
  5. Verdecchia P, Cavallini C, Spanevello A, Angeli F (2020) The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med. [CrossRef] [Google Scholar] [PubMed]
  6. Gurwitz D (2020) Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. [CrossRef] [Google Scholar]
  7. Akhmerov A, Marban E (2020) COVID-19 and the Heart. Circ Res 126: 1443-1455. [CrossRef] [Google Scholar] [PubMed]
  8. Milbrandt EB, Reade MC, Lee MJ, Shook SL, Angus DC, et al. (2009) Prevalence and significance of coagulation abnormalities in community-acquired pneumonia. Mol Med 15: 438-445. [CrossRef] [Google Scholar] [PubMed]
  9. Smeeth L, Thomas SL, Hall AJ, Hubbard R, Farrington P, et al. (2004) Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med 351: 2611-2618. [CrossRef] [Google Scholar] [PubMed]
  10. Corrales-Medina VF, Musher DM, Shachkina S, Chirinos JA (2013) Acute pneumonia and the cardiovascular system. Lancet 381: 496-505. [CrossRef] [Google Scholar] [PubMed]
  11. Davidson JA, Warren-Gash C (2019) Cardiovascular complications of acute respiratory infections: current research and future directions. Expert Rev Anti Infect Ther 17: 939-942. [CrossRef] [Google Scholar] [PubMed]
  12. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, et al. (2020) Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med 382: e38. [CrossRef] [Google Scholar] [PubMed]
  13. Gattinoni L, Coppola S, Cressoni M, Busana M, Rossi S, et al. (2020) Covid-19 Does Not Lead to a "Typical" Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 201: 299-1300. [CrossRef] [Google Scholar] [PubMed]
  14. Liu Y, Yang Y, Zhang C, Huang F, Wang F, et al. (2020) Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 63: 364-374. [CrossRef] [Google Scholar] [PubMed]
  15. Zou Z, Yan Y, Shu Y, Gao R, Sun Y, et al. (2014) Angiotensin-converting enzyme 2 protects from lethal avian influenza A H5N1 infections. Nat Commun 5: 3594. [CrossRef] [Google Scholar] [PubMed]
  16. Xu Z, Shi L, Wang Y, Zhang J, Huang L, et al. (2020) Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 8: 420-422. [CrossRef] [Google Scholar] [PubMed]
  17. Zhou F, Yu T, Du R, Fan G, Liu Y, et al. (2020) Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395: 1054-1062. [CrossRef] [Google Scholar] [PubMed]
  18. Bhatia M, Moochhala S (2004) Role of inflammatory mediators in the pathophysiology of acute respiratory distress syndrome. J Pathol 202: 145-156. [CrossRef] [Google Scholar] [PubMed]
  19. Moore JB, June CH (2020) Cytokine release syndrome in severe COVID-19. Science 368: 473-474. [CrossRef] [Google Scholar]
  20. Ronco C, Reis T (2020) Kidney involvement in COVID-19 and rationale for extracorporeal therapies. Nat Rev Nephrol 16: 308-310. [CrossRef] [Google Scholar] [PubMed]
  21. Wu C, Chen X, Cai Y, Xia J, Zhou X, et al. (2020) Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med. [CrossRef] [Google Scholar] [PubMed]
  22. Zhang L, Yan X, Fan Q, Liu H, Liu X, et al. (2020) D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost. [CrossRef] [Google Scholar] [PubMed]
  23. Uthman IW, Gharavi AE (2002) Viral infections and antiphospholipid antibodies. Semin Arthritis Rheum 31: 256-263. [CrossRef] [Google Scholar] [PubMed]
  24. Abdel-Wahab N, Talathi S, Lopez-Olivo MA, Suarez-Almazor ME (2018) Risk of developing antiphospholipid antibodies following viral infection: a systematic review and meta-analysis. Lupus 27: 572-583. [CrossRef] [Google Scholar] [PubMed]
  25. Page MJ, Bester J, Pretorius E (2018) The inflammatory effects of TNF-alpha and complement component 3 on coagulation. Sci Rep 8: 1812. [CrossRef] [Google Scholar] [PubMed]
  26. Liu W, Li H (2020) COVID-19: Attacks the 1-Beta Chain of Hemoglobin and Captures the Porphyrin to Inhibit Human Heme Metabolism. Chem Rxiv.
  27. Blackburn R, Zhao H, Pebody R, Hayward A, Warren-Gash C, et al. (2018) Laboratory-Confirmed Respiratory Infections as Predictors of Hospital Admission for Myocardial Infarction and Stroke: Time-Series Analysis of English Data for 2004-2015. Clin Infect Dis 67: 8-17. [CrossRef] [Google Scholar] [PubMed]
  28. Shi S, Qin M, Shen B, Cai Y, Liu T, et al. (2020) Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiol. [CrossRef] [Google Scholar] [PubMed]
  29. Guo T, Fan Y, Chen M, Wu X, Zhang L, et al. (2020) Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. [CrossRef] [Google Scholar] [PubMed]
  30. Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, et al. (2009) SARS-coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest 39: 618-625. [CrossRef] [Google Scholar] [PubMed]
  31. Puelles VG, Lütgehetmann M, Lindenmeyer MT, Sperhake JP, Wong MN, et al. (2020) Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med. [CrossRef] [Google Scholar] [PubMed]
  32. Yang X, Yu Y, Xu J, Shu H, Xia J, et al. (2020) Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8: 475-481. [CrossRef] [Google Scholar] [PubMed]
  33. Cheng Y, Luo R, Wang K, Zhang M, Wang Z, et al. (2020) Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 97: 829-838. [CrossRef] [Google Scholar] [PubMed]
  34. Oudit GY, Herzenberg AM, Kassiri Z, Wong D, Reich H, et al. (2006) Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol 168: 1808-1820. [CrossRef] [Google Scholar] [PubMed]
  35. Su H, Lei CT, Zhang C (2017) Interleukin-6 Signaling Pathway and Its Role in Kidney Disease: An Update. Front Immunol 8: 405. [CrossRef] [Google Scholar] [PubMed]
  36. Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, et al. (2020) Compassionate Use of Remdesivir for Patients with Severe Covid-19. N Engl J Med. [CrossRef] [Google Scholar] [PubMed]
  37. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, et al. (2020) Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents 2020:105949. [CrossRef] [Google Scholar] [PubMed]
  38. Sapp JL, Alqarawi W, MacIntyre CJ, Tadros R, Steinberg C, et al. (2020) Guidance On Minimizing Risk of Drug-Induced Ventricular Arrhythmia During Treatment of COVID-19: A Statement from the Canadian Heart Rhythm Society. Can J Cardiol. [CrossRef] [Google Scholar] [PubMed]
  39. Bloch EM, Shoham S, Casadevall A, Sachais BS, Shaz B, et al. (2020) Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest. [CrossRef] [Google Scholar] [PubMed]
  40. Ahn M, Park EJ, Woo JM (2017) Current status and future prospects of research and development operations in traditional and complementary and alternative medicine manufacturing small- and medium-sized enterprises: a 2014 company-based survey. Integr Med Res 6: 409-417. [CrossRef] [Google Scholar] [PubMed]
  41. Poston JT, Patel BK, Davis AM (2020) Management of Critically Ill Adults With COVID-19. JAMA. [CrossRef] [Google Scholar] [PubMed]
  42. Luo P, Liu Y, Qiu L, Liu X, Liu D, et al. (2020) Tocilizumab treatment in COVID-19: A single center experience. J Med Virol. [CrossRef] [Google Scholar] [PubMed]
  43. Liu Q, Zhou YH, Yang ZQ (2016) The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 13: 3-10. [CrossRef] [Google Scholar] [PubMed]
  44. Russell B, Moss C, George G, Santaolalla A, Cope A, et al. (2020) Associations between immune-suppressive and stimulating drugs and novel COVID-19-a systematic review of current evidence. Ecancermedicalscience 14: 1022. [CrossRef] [Google Scholar] [PubMed]
  45. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, et al. (2020) Transplantation of ACE2(-) Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia. Aging Dis 11: 216-228. [CrossRef] [Google Scholar] [PubMed]
  46. Zhang P, Zhu L, Cai J, Lei F, Qin JJ, et al. (2020) Association of Inpatient Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers with Mortality Among Patients With Hypertension Hospitalized With COVID-19. Circ Res 126: 1671-1681. [CrossRef] [Google Scholar] [PubMed]
  47. Barrett CD, Moore HB, Yaffe MB, Moore EE (2020) ISTH interim guidance on recognition and management of coagulopathy in COVID-19: A Comment. J Thromb Haemost. [CrossRef] [Google Scholar] [PubMed]
  48. Kiekens C, Boldrini P, Andreoli A, Avesani R, Gamna F, et al. (2020) Rehabilitation and respiratory management in the acute and early post-acute phase. "Instant paper from the field" on rehabilitation answers to the Covid-19 emergency. Eur J Phys Rehabil Med. [CrossRef] [Google Scholar] [PubMed]
  49. Thompson BT, Chambers RC, Liu KD (2017) Acute Respiratory Distress Syndrome. N Engl J Med 377: 1904-1905. [CrossRef] [PubMed]