Profile
International Journal of Clinical Research & Trials Volume 2 (2017), Article ID 2:IJCRT, 7 pages
https://doi.org/10.15344/2456-8007/2017/112
Mini Review
Branched-chain Amino Acids as Potential Diagnostic and Prognostic Disease Biomarkers

Federica Ianni, Lucia Pucciarini, Emidio Camaioni, Giulia Alunni, Roccaldo Sardella*, Benedetto Natalini

Department of Pharmaceutical Sciences, Section of Chemistry and Technology of Drugs, Via delLiceo 1, 06123 Perugia, Italy
Dr. Roccaldo Sardella, Department of Pharmaceutical Sciences, University of Perugia, Section of Chemistry and Technology of Drugs, Via del Liceo 1, 06123 Perugia, Italy; E-mail: roccaldo.sardella@unipg.it
12 December 2016; 13 March 2017; 15 March 2017
Ianni F, Pucciarini L, Camaioni E, Alunni G, Sardella R, et al. (2017) Branched-chain Amino Acids as Potential Diagnostic and Prognostic Disease Biomarkers. Int J Clin Res Trials 2: 112. doi: https://doi.org/10.15344/ijcrt/2017/112

References

  1. Waterlow JC, Golden MH, Garlick PJ (1978) Protein turnover in man measured with 15N: comparison of end products and dose regimes. Am J Physiol 235: E165-174 [CrossRef] [Google Scholar] [PubMed]
  2. Bifari F, Nisoli E (2016) Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol [CrossRef] [Google Scholar] [PubMed]
  3. Felig P, Marliss E, Cahill GF Jr (1969) Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 281: 811-816 [CrossRef] [Google Scholar] [PubMed]
  4. Huffman KM, Shah SH, Stevens RD, Bain JR, Muehlbauer M, et al. (2009) Relationships between circulating metabolic intermediates and insulin action in overweight to obese, inactive men and women. Diabetes Care 32:1678-1683 [CrossRef] [Google Scholar] [PubMed]
  5. Tai ES, Tan ML, Stevens RD, Low YL, Muehlbauer MJ, et al. (2010) Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia 53: 757-767 [CrossRef] [Google Scholar] [PubMed]
  6. Wang TJ, Larson MG, Vasan RS, Cheng S, Rhee EP, et al. (2011) Metabolite profiles and the risk of developing diabetes. Nat Med 17: 448-453 [CrossRef] [Google Scholar] [PubMed]
  7. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, et al. (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9: 311-326 [CrossRef] [Google Scholar] [PubMed]
  8. Wurtz P, Soininen P, Kangas AJ, Ronnemaa T, Lehtimaki T, et al. (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36: 648-655 [CrossRef] [Google Scholar] [PubMed]
  9. Okamoto N, Miyagi Y, Chiba A, Akaike M, Shiozawa M, et al. (2009) Diagnostic modeling with differences in plasma amino acid profiles between non-cachectic colorectal/breast cancer patients and healthy individuals. Int J Med MedSci 1: 1-8 [Google Scholar]
  10. Magnusson M, Lewis GD, Ericson U, Orho-Melander M, Hedblad B, et al. (2013) A diabetes-predictive amino acid score and future cardiovascular disease. Eur Heart J 34: 1982-1989 [CrossRef] [Google Scholar] [PubMed]
  11. Blonde-Cynober F, Aussel C, Cynober L (1999) Abnormalities in branchedchain amino acid metabolism in cirrhosis: influence of hormonal and nutritional factors and directions for future research. ClinNutr 18: 5-13 [CrossRef] [Google Scholar] [PubMed]
  12. Kumar MA, Bitla AR, Raju KV, Manohar SM, Kumar VS, et al. (2012) Branched chain amino acid profile in early chronic kidney disease. Saudi J Kidney Dis Transpl 23: 1202-1207 [CrossRef] [Google Scholar] [PubMed]
  13. Kimberly WT, Wang Y, Pham L, Furie KL, Gerszten RE (2013) Metabolite Profiling Identifies a Branched Chain Amino Acid Signature in Acute Cardioembolic Stroke. Stroke 44: 1389-1395 [CrossRef] [Google Scholar] [PubMed]
  14. Mochel F, Charles P, Seguin F, Barritault J, Coussieu C, et al. (2007) Early Energy Deficit in Huntington Disease: Identification of a Plasma Biomarker Traceable during Disease Progression. Plos one 2: e647 [CrossRef] [Google Scholar] [PubMed]
  15. Batch BC, Hyland K, Svetkey LP (2014) Branch chain amino acids: biomarkers of health and disease. Curr Opin Clin Nutr Metab Care 17: 86- 89 [CrossRef] [Google Scholar] [PubMed]
  16. Giesbertz P, Daniel H (2016) Branched-chain amino acids as biomarkers in diabetes. Curr Opin Clin Nutr Metab Care 19: 48-54. [CrossRef] [Google Scholar] [PubMed]
  17. Ebbeling CB, Pawlak DB, Ludwig DS (2002) Childhood obesity: publichealth crisis, common sense cure. Lancet 360: 473-482 [CrossRef] [Google Scholar] [PubMed]
  18. James PT, Rigby N, Leach R (2004) The obesity epidemic, metabolic syndrome and future prevention strategies. Eur J Cardiovasc Prev Rehabil 11: 3-8 [CrossRef] [Google Scholar] [PubMed]
  19. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9: 367-377 [CrossRef] [Google Scholar] [PubMed]
  20. Sowers JR (2003) Obesity as a cardiovascular risk factor. Am J Med 115 Suppl 8A: 37S-41S [CrossRef] [Google Scholar] [PubMed]
  21. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute scientific statement - executive summary. CritPathwCardiol 4: 198-203 [CrossRef] [Google Scholar] [PubMed]
  22. Rauschert S, Uhl O, Koletzko B, Hellmuth C (2014) Metabolomic biomarkers for obesity in humans: a short review. Ann Nutr Metab 64: 314-324 [CrossRef] [Google Scholar] [PubMed]
  23. Yamakado M, Nagao K, Imaizumi A, Tania M, Toda A, et al. (2015) Plasma free amino acid profiles predict four-year risk of developing diabetes, metabolic syndrome, dyslipidemia, and hypertension in Japanese population. Sci Rep 5: 11918 [CrossRef] [Google Scholar] [PubMed]
  24. McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, et al. (2013) Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 8: 52-61 [CrossRef] [Google Scholar] [PubMed]
  25. Xiao F, Yu J, Guo Y, Deng J, Li K, et al. (2014) Effects of individual branched-chain amino acids deprivation on insulin sensitivity and glucose metabolism in mice. Metabolism 63: 841-850 [CrossRef] [Google Scholar] [PubMed]
  26. O’Connel TM (2013) The Complex Role of Branched Chain Amino Acids in diabetes and cancer. Metabolites 3: 931-945 [CrossRef] [Google Scholar] [PubMed]
  27. Calle EE, Kaaks R (2004) Overweight, obesity and cancer: Epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4: 579-591 [CrossRef] [Google Scholar] [PubMed]
  28. Johnson JA, Carstensen B, Witte D, Bowker SL, Lipscombe L, et al. (2012) Diabetes and cancer: Evaluating the temporal relationship between type 2 diabetes and cancer incidence. Diabetologia 55: 1607-1618 [CrossRef] [Google Scholar] [PubMed]
  29. Felig P, Wahren J, Hendler R, Brundin T (1974) Splanchnic glucose and amino acid metabolism in obesity. J Clin Invest 53: 582-590 [CrossRef] [Google Scholar] [PubMed]
  30. Gougeon R, Morais JA, Chevalier S, Pereira S, Lamarche M, et al. (2008) Determinants of whole-body protein metabolism in subjects with and without type 2 diabetes. Diabetes Care 31: 128-133 [CrossRef] [Google Scholar] [PubMed]
  31. Deberardinis RJ, Sayed N, Ditsworth D, Thompson CB (2008) Brick by brick: metabolism and tumor cell growth. Curr Opin Genet Dev 18: 54-61 [CrossRef] [Google Scholar] [PubMed]
  32. Kroemer G, Pouyssegur J (2008) Tumor cell metabolism: cancer's Achilles' heel. Cancer Cell 13: 472-482 [CrossRef] [Google Scholar] [PubMed]
  33. Newgard CB, An J, Bain JR, Muehlbauer MJ, Stevens RD, et al. (2009) A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab 9: 311-326 [CrossRef] [Google Scholar] [PubMed]
  34. Cheng S, Rhee EP, Larson MG, Lewis GD, McCabe EL, et al. (2012) Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation 125: 2222-2231 [CrossRef] [Google Scholar] [PubMed]
  35. Ferrannini E, Natali A, Camastra S, Nannipieri M, Mari A, et al. (2013) Early metabolic markers of the development of dysglycemia and type 2 diabetes and their physiological significance. Diabetes 62: 1730-1737 [CrossRef] [Google Scholar] [PubMed]
  36. Floegel A, Stefan N, Yu Z, Muhlenbruch K, Drogan D, et al. (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomics approach. Diabetes 62: 639-648 [CrossRef] [Google Scholar] [PubMed]
  37. McCormack SE, Shaham O, McCarthy MA, Deik AA, Wang TJ, et al. (2013) Circulating branched-chain amino acid concentrations are associated with obesity and future insulin resistance in children and adolescents. Pediatr Obes 8: 52-61 [CrossRef] [Google Scholar] [PubMed]
  38. Menni C, Fauman E, Erte I, Perry JR, Kastenmuller G, et al. (2013) Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes62: 4270-4276 [CrossRef] [Google Scholar] [PubMed]
  39. Eley HL, Russell ST, Tisdale MJ (2007) Effect of branched-chain amino acids on muscle atrophy in cancer cachexia. Biochem J 407: 113-120 [CrossRef] [Google Scholar] [PubMed]
  40. Baracos VE, Mackenzie ML (2006) Investigations of branched-chain amino acids and their metabolites in animal models of cancer. J Nutr 136: 237S-42S [CrossRef] [Google Scholar] [PubMed]
  41. Lam VW, Poon RT (2008) Role of branched-chain amino acids in management of cirrhosis and hepatocellular carcinoma. Hepatol Res 38 Suppl 1: S107-115 [CrossRef] [Google Scholar] [PubMed]
  42. Beck SA, Tisdale MJ (1989) Nitrogen excretion in cancer cachexia and its modification by a high fat diet in mice. Cancer Res 49: 3800-3804 [Google Scholar] [PubMed]
  43. Norton JA, Gorschboth CM, Wesley RA, Burt ME, Brennan MF (1985) Fasting plasma amino acid levels in cancer patients. Cancer 56: 1181-1186 [CrossRef] [Google Scholar] [PubMed]
  44. Laviano A, Muscaritoli M, Cascino A, Preziosa I, Inui A, et al. (2005) Branched-chain amino acids: the best compromise to achieve anabolism? Curr Opin Clin Nutr Metab Care 8: 408-414 [Google Scholar] [PubMed]
  45. Tajiri K, Shimizu Y (2013) Branched-chain amino acids in liver diseases. World J Gastroenterol 19: 7620-7629 [CrossRef] [Google Scholar] [PubMed]
  46. Campollo O, Sprengers D, McIntyre N (1992) The BCAA/AAA ratio of plasma amino acids in three different groups of cirrhotics. Rev Invest Clin 44: 513-518 [Google Scholar] [PubMed]
  47. Steigmann F, Szanto PB, Poulos A, Lim PE, Dubin A (1984) Significance of serum aminograms in diagnosis and prognosis of liver diseases. J Clin Gastroenterol 6: 453-460 [CrossRef] [Google Scholar] [PubMed]
  48. Watanabe A, Higashi T, Sakata T, Nagashima H (1984) Serum amino acid levels in patients with hepatocellular carcinoma. Cancer 54: 1875-1882 [CrossRef] [Google Scholar] [PubMed]
  49. Yang J, He J, Cao H, Zhao X, Fu S, et al. (2012) Correlation between plasma amino acid profiles and the various stages of hepatitis B infection. Eur J ClinMicrobiol Infect Dis 31: 2045-2052 [CrossRef] [Google Scholar] [PubMed]
  50. Ninomiya T, Yoon S, Sugano M, Kumon Y, Seo Y, et al. (1999) Improvement of molar ratio of branched-chain amino acids to tyrosine (BTR) associated with liver fibrosis in chronic hepatitis C patients treated with interferonalpha. Dig Dis Sci 44: 1027-1033 [CrossRef] [Google Scholar] [PubMed]
  51. Kawamura-Yasui N, Kaito M, Nakagawa N, Fujita N, Ikoma J, et al. (1999) Evaluating response to nutritional therapy using the branched-chain amino acid/tyrosine ratio in patients with chronic liver disease. J Clin Lab Anal 13: 31-34 [Google Scholar] [PubMed]
  52. Suliman ME, A Rashid Qureshi, Stenvinkel P, Pecoits-Filho R, Bárány P, et al. (2005) Inflammation contributes to low plasma amino acid concentrations in patients with chronic kidney disease. Am J ClinNutrAugust 82: 342-349 [CrossRef] [Google Scholar] [PubMed]
  53. Reeds PJ, Fjeld CR, Jahoor F (1994) Do the differences between the amino acid compositions of acute-phase and muscle proteins have a bearing on nitrogen loss in traumatic states? J Nutr 124: 906-910 [CrossRef] [Google Scholar] [PubMed]
  54. Jahoor F, Desai M, Herndon DN, Wolfe RR (1988) Dynamics of the protein metabolic response to burn injury. Metabolism 37: 330-337 [CrossRef] [Google Scholar] [PubMed]
  55. Karlstad MD, Sayeed MM (1987) Effect of endotoxic shock on skeletal muscle intracellular electrolytes and amino acid transport. Am J Physiol 252: R674-680 [CrossRef] [Google Scholar] [PubMed]
  56. Grimble RF (2001) Nutritional modulation of immune function. Proc Nutr Soc 60: 389-397 [CrossRef] [Google Scholar] [PubMed]
  57. Rajendra W (1987) High performance liquid chromatographic determination of aminoacids in biological samples by precolumn derivatization with O-Phthaldialdehyde. J Liq Chromatogr 10: 941-955 [CrossRef] [Google Scholar]
  58. Lustgarten MS, Price LL, Chale A, Phillips EM, Fielding RA (2014) Branched Chain Amino Acids Are Associated With Muscle Mass in Functionally Limited Older Adults. J Gerontol A Biol Sci Med Sci 69: 717-724 [CrossRef] [Google Scholar] [PubMed]
  59. Zhai G, Wang-Sattler R, Hart DJ, Arden NK, Hakim AJ, et al. (2010) Serum branched-chain amino acid to histidine ratio: a novel metabolomic biomarker of knee osteoarthritis. Ann Rheum Dis 69: 1227-1231 [CrossRef] [Google Scholar] [PubMed]
  60. Brosnan JT, Brosnan ME (2006) Branched-chain amino acids: enzyme and substrate regulation. J Nutr 136: 207S-11S [CrossRef] [Google Scholar] [PubMed]
  61. Baranyi A, Amouzadeh-Ghadikolai O, Von Lewinski D, Rothenhäusler HB, Theokas S, et al. (2016) Branched-Chain Amino Acids as New Biomarkers of Major Depression - A Novel Neurobiology of Mood Disorder. Plos one 11: e0160542 [CrossRef] [Google Scholar] [PubMed]
  62. Aquilani R, Boselli M, Boschi F, Viglio S, Iadarola P, et al. (2008) Branchedchain amino acids may improve recovery from a vegetative or minimally conscious state in patients with traumatic brain injury: a pilot study. Arch Phys Med Rehabil 89:1642-1647 [CrossRef] [Google Scholar] [PubMed]
  63. Mochel F, Benaich S, Rabier D, Durr A (2011) Validation of plasma branched chain amino acids as biomarkers in Huntington disease. Arch Neurol 68: 265-267 [CrossRef] [Google Scholar] [PubMed]
  64. Flier JS (2006) Neuroscience. Regulating energy balance: the substrate strikes back. Science 312: 861-864 [CrossRef] [Google Scholar] [PubMed]
  65. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18: 1926-1945 [CrossRef] [Google Scholar] [PubMed]
  66. Colin E, Régulier E, Perrin V, Dürr A, Brice A, et al. (2005) Akt is altered in an animal model of Huntington's disease and in patients. Eur J Neurosci 21: 1478-1488 [CrossRef] [Google Scholar] [PubMed]
  67. Heng MY, Duong DK, Albin RL, Tallaksen-Greene SJ, Hunter JM, et al. (2010) Early autophagic response in a novel knock-in model of Huntington disease. Hum Mol Genet 19: 3702-3720 [CrossRef] [Google Scholar] [PubMed]