Profile
International Journal of Clinical Pharmacology & Pharmacotherapy Volume 3 (2018), Article ID 3:IJCPP-134, 15 pages
https://doi.org/10.15344/2456-3501/2018/134
Review Article
Comparative Pharmacology of Tyrosine Kinase Inhibitors for the Treatment of Chronic Myeloid Leukemia

José Ramón Azanza*, Belén Sádaba and Nieves Díez

Clinical Pharmacology Service, Clinical University of Navarra, Pamplona, Spain
Prof. José Ramón Azanza Perea, Clinical Pharmacology Service, Clinical University of Navarra, Pamplona, Spain, Tel: +34948296695, Fax: +34948296500; E-mail: jrazanza@unav.es
09 April 2017; 26 April 2018; 28 April 2018
Azanza JR, Sádaba B, Díez N (2018) Comparative Pharmacology of Tyrosine Kinase Inhibitors for the Treatment of Chronic Myeloid Leukemia. Int J Clin Pharmacol Pharmacother 3: 134. doi: https://doi.org/10.15344/2456-3501/2018/134

References

  1. Spiers AS (1977) The clinical features of chronic granulocytic leukaemia. Clin Haematol 6: 77-95 [Google Scholar] [PubMed]
  2. Nowell PC (2007) Discovery of the Philadelphia chromosome: a personal perspective. J Clin Invest 117: 2033-2035 [CrossRef] [Google Scholar] [PubMed]
  3. Rusconi F, Piazza R, Vagge E, Gambacorti-Passerini C (2014) Bosutinib : a review of preclinical and clinical studies in chronic myelogenous leukemia. Expert Opin Pharmacother 15: 701-710 [CrossRef] [Google Scholar] [PubMed]
  4. Bethelmie-Bryan B, Lord K, Holloway S, Khoury HJ (2014) Bosutinib treatment for Philadelphia chromosome-positive leukemias. Future Oncol 10: 179-185 [CrossRef] [Google Scholar] [PubMed]
  5. Zimmermann J, Caravatti G, Mett H, Meyer T, Muller M, et al. (1996) Phenylamino-pyrimidine (PAP) derivatives: a new class of potent and selective inhibitors of protein kinase C (PKC). Arch Pharm (Weinheim) 329: 371-376 [CrossRef] [Google Scholar] [PubMed]
  6. Zimmermann S, Wels W, Froesch BA, Gerstmayer B, Stahel RA, et al. (1997) A novel immunotoxin recognising the epithelial glycoprotein-2 has potent antitumoural activity on chemotherapy-resistant lung cancer. Cancer Immunol Immunother 44: 1-9 [CrossRef] [Google Scholar] [PubMed]
  7. Weisberg E, Manley P, Mestan J, Cowan-Jacob S, Ray A, et al. (2006) AMN107 (nilotinib): a novel and selective inhibitor of BCR-ABL. Br J Cancer 94: 1765-1769 [CrossRef] [Google Scholar] [PubMed]
  8. Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, et al. (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7: 129-141 [CrossRef] [Google Scholar] [PubMed]
  9. Zhou T, Commodore L, Huang WS, Wang Y, Thomas M, et al. (2011) Structural mechanism of the Pan-BCR-ABL inhibitor ponatinib (AP24534): lessons for overcoming kinase inhibitor resistance. Chem Biol Drug Des 77: 1-11 [CrossRef] [Google Scholar] [PubMed]
  10. Ben-Neriah Y, Daley GQ, Mes-Masson AM, Witte ON, Baltimore D, et al. (1986) The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science 233: 212-214 [CrossRef] [Google Scholar] [PubMed]
  11. Van Etten RA, Jackson P, Baltimore D (1989) The mouse type IV c-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 58: 669-678 [CrossRef] [Google Scholar] [PubMed]
  12. Raitano AB, Halpern JR, Hambuch TM, Sawyers CL (1995) The Bcr- Abl leukemia oncogene activates Jun kinase and requires Jun for transformation. Proc Natl Acad Sci U S A 92: 11746-11750 [CrossRef] [Google Scholar] [PubMed]
  13. Sawyers CL, McLaughlin J, Witte ON (1995) Genetic requirement for Ras in the transformation of fibroblasts and hematopoietic cells by the Bcr-Abl oncogene. J Exp Med 181: 307-313 [CrossRef] [Google Scholar] [PubMed]
  14. Skorski T, Bellacosa A, Nieborowska-Skorska M, Majewski M, Martinez R, et al. (1997) Transformation of hematopoietic cells by BCR/ABL requires activation of a PI-3k/Akt-dependent pathway. EMBO J 16: 6151-6161 [CrossRef] [Google Scholar] [PubMed]
  15. Colicelli J (2010) ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci Signal 3: 6 [CrossRef] [Google Scholar] [PubMed]
  16. Greuber EK, Smith-Pearson P, Wang J, Pendergast AM (2013) Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat Rev Cancer 13: 559-571 [Google Scholar]
  17. Khatri A, Wang J, Pendergast AM (2016) Multifunctional Abl kinases in health and disease. J Cell Sci 129: 9-16 [CrossRef] [Google Scholar] [PubMed]
  18. Moslehi JJ, Deininger M (2015) Tyrosine Kinase Inhibitor-Associated Cardiovascular Toxicity in Chronic Myeloid Leukemia. J Clin Oncol 33: 4210-4218 [CrossRef] [Google Scholar] [PubMed]
  19. Uitdehaag JC, de Roos JA, van Doornmalen AM, Prinsen MB, de Man J, et al. (2014) Comparison of the cancer gene targeting and biochemical selectivities of all targeted kinase inhibitors approved for clinical use. PLoS One 9: e92146 [CrossRef] [Google Scholar] [PubMed]
  20. Druker BJ, Guilhot F, O'Brien SG, Gathmann I, Kantarjian H, et al. (2006) Five-year follow-up of patients receiving imatinib for chronic myeloid leukemia. N Engl J Med 355: 2408-2417 [CrossRef] [Google Scholar] [PubMed]
  21. de Lavallade H, Apperley JF, Khorashad JS, Milojkovic D, Reid AG, et al. (2008) Imatinib for newly diagnosed patients with chronic myeloid leukemia: incidence of sustained responses in an intention-to-treat analysis. J Clin Oncol 26: 3358-3363 [CrossRef] [Google Scholar] [PubMed]
  22. Darkow T, Henk HJ, Thomas SK, Feng W, Baladi JF, et al. (2007) Treatment interruptions and non-adherence with imatinib and associated healthcare costs: a retrospective analysis among managed care patients with chronic myelogenous leukaemia. Pharmacoeconomics 25: 481-496 [CrossRef] [Google Scholar] [PubMed]
  23. Kuwazuru Y, Yoshimura A, Hanada S, Utsunomiya A, Makino T, et al. (1990) Expression of the multidrug transporter, P-glycoprotein, in acute leukemia cells and correlation to clinical drug resistance. Cancer 66: 868-873 [CrossRef] [Google Scholar] [PubMed]
  24. Mahon FX, Belloc F, Lagarde V, Chollet C, Moreau-Gaudry F, et al. (2003) MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood 101: 2368-2373 [CrossRef] [Google Scholar] [PubMed]
  25. Thomas J, Wang L, Clark RE, Pirmohamed M (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104: 3739-3745 [CrossRef] [Google Scholar] [PubMed]
  26. Redaelli S, Mologni L, Rostagno R, Piazza R, Magistroni V, et al. (2012) Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors. Am J Hematol 87: 125-128 [CrossRef] [Google Scholar] [PubMed]
  27. Wehrle J, Pahl HL, von Bubnoff N (2014) Ponatinib: a third-generation inhibitor for the treatment of CML. Recent Results Cancer Res 201: 99-107 [CrossRef] [Google Scholar] [PubMed]
  28. Abbas R, Hug BA, Leister C, Gaaloul ME, Chalon S, et al. (2012) A phase I ascending single-dose study of the safety, tolerability, and pharmacokinetics of bosutinib (SKI-606) in healthy adult subjects. Cancer Chemother Pharmacol 69: 221-227 [CrossRef] [Google Scholar] [PubMed]
  29. Abbas R, Hug BA, Leister C, Burns J, Sonnichsen D, et al. (2011) Effect of ketoconazole on the pharmacokinetics of oral bosutinib in healthy subjects. J Clin Pharmacol 51: 1721-1727 [CrossRef] [Google Scholar] [PubMed]
  30. Abbas R, Boni J, Sonnichsen D (2015) Effect of rifampin on the pharmacokinetics of bosutinib, a dual Src/Abl tyrosine kinase inhibitor, when administered concomitantly to healthy subjects. Drug Metab Pers Ther 30: 57-63 [CrossRef] [Google Scholar] [PubMed]
  31. European Medicines Agency Sprycel (dasatinib): summary of product characteristics [View]
  32. Hsyu PH, Pignataro DS, Matschke K (2017) Absolute Bioavailability of Bosutinib in Healthy Subjects From an Open-Label, Randomized, 2-Period Crossover Study. Clin Pharmacol Drug Dev 7: 373-381 [CrossRef] [Google Scholar] [PubMed]
  33. Peng B, Dutreix C, Mehring G, Hayes MJ, Ben-Am M, et al. (2004) Absolute bioavailability of imatinib (Glivec) orally versus intravenous infusion. J Clin Pharmacol 44: 158-162 [CrossRef] [Google Scholar] [PubMed]
  34. Novartis Pharmaceuticals Corporation Tasigna® (nilotinib capsules): US prescribing information
  35. European Medicines Agency (19/02/2018) Iclusig (ponatinib): summary of product characteristics
  36. Wang X, Roy A, Hochhaus A, Kantarjian HM, Chen TT, et al. (2013) Differential effects of dosing regimen on the safety and efficacy of dasatinib: retrospective exposure-response analysis of a Phase III study. Clin Pharmacol 5: 85-97 [CrossRef] [Google Scholar] [PubMed]
  37. Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, et al. (2006) Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354: 2542-2551 [CrossRef] [Google Scholar] [PubMed]
  38. Peng B, Hayes M, Resta D, Racine-Poon A, Druker BJ, et al. (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22: 935-942 [CrossRef] [Google Scholar] [PubMed]
  39. le Coutre P, Kreuzer KA, Pursche S, Bonin M, Leopold T, et al. (2004) Pharmacokinetics and cellular uptake of imatinib and its main metabolite CGP74588. Cancer Chemother Pharmacol 53: 313-323 [CrossRef] [Google Scholar] [PubMed]
  40. Cortes JE, Kantarjian H, Shah NP, Bixby D, Mauro MJ, et al. (2012) Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 367: 2075-2088 [CrossRef] [Google Scholar]
  41. Sparano BA, Egorin MJ, Parise RA, Walters J, Komazec KA, et al. (2009) Effect of antacid on imatinib absorption. Cancer Chemother Pharmacol 63: 525-528 [CrossRef] [Google Scholar] [PubMed]
  42. Narasimhan NI, Dorer DJ, Niland K, Haluska F, Sonnichsen D (2013) Effects of food on the pharmacokinetics of ponatinib in healthy subjects. J Clin Pharm Ther 38: 440-444 [CrossRef] [Google Scholar] [PubMed]
  43. Tanaka C, Yin OQ, Sethuraman V, Smith T, Wang X, et al. (2010) Clinical pharmacokinetics of the BCR-ABL tyrosine kinase inhibitor nilotinib. Clin Pharmacol Ther 87: 197-203 [CrossRef] [Google Scholar] [PubMed]
  44. Gambacorti-Passerini C, Barni R, le Coutre P, Zucchetti M, Cabrita G, et al. (2000) Role of alpha1 acid glycoprotein in the in vivo resistance of human BCR-ABL(+) leukemic cells to the abl inhibitor STI571. J Natl Cancer Inst 92: 1641-1650 [CrossRef] [Google Scholar] [PubMed]
  45. Gambacorti-Passerini C, Zucchetti M, Russo D, Frapolli R, Verga M, et al. (2003) Alpha1 acid glycoprotein binds to imatinib (STI571) and substantially alters its pharmacokinetics in chronic myeloid leukemia patients. Clin Cancer Res 9: 625-632 [Google Scholar] [PubMed]
  46. European Medicines Agency Bosulif (bosutinib): summary of product characteristics [View]
  47. Kamath AV, Wang J, Lee FY, Marathe PH (2008) Preclinical pharmacokinetics and in vitro metabolism of dasatinib (BMS-354825): a potent oral multi-targeted kinase inhibitor against SRC and BCR-ABL. Cancer Chemother Pharmacol 61: 365-376 [CrossRef] [Google Scholar] [PubMed]
  48. Porkka K, Koskenvesa P, Lundan T, Rimpilainen J, Mustjoki S, et al. (2008) Dasatinib crosses the blood-brain barrier and is an efficient therapy for central nervous system Philadelphia chromosome-positive leukemia. Blood 112: 1005-1012 [CrossRef] [Google Scholar] [PubMed]
  49. Leis JF, Stepan DE, Curtin PT, Ford JM, Peng B, et al. (2004) Central nervous system failure in patients with chronic myelogenous leukemia lymphoid blast crisis and Philadelphia chromosome positive acute lymphoblastic leukemia treated with imatinib (STI-571). Leuk Lymphoma 45: 695-698 [CrossRef] [Google Scholar] [PubMed]
  50. Petzer AL, Gunsilius E, Hayes M, Stockhammer G, Duba HC, et al. (2002) Low concentrations of STI571 in the cerebrospinal fluid: a case report. Br J Haematol 117: 623-625 [CrossRef] [Google Scholar] [PubMed]
  51. Abbas R, Chaudhary I, A. Hug B, Leister C, Burns J, et al. (2018) Mass Balance, Metabolic Disposition, Metabolite Characterization, and Pharmacokinetics of Oral 14C-Labeled Bosutinib in Healthy Subjects. In: 9th Triennial Meeting, International Society for the Study of Xenobiotics. Istambul, Turkey
  52. Christopher LJ, Cui D, Wu C, Luo R, Manning JA, et al. (2008) Metabolism and disposition of dasatinib after oral administration to humans. Drug Metab Dispos 36: 1357-1364 [CrossRef] [Google Scholar] [PubMed]
  53. Gschwind HP, Pfaar U, Waldmeier F, Zollinger M, Sayer C, et al. (2005) Metabolism and disposition of imatinib mesylate in healthy volunteers. Drug Metab Dispos 33: 1503-1512 [CrossRef] [Google Scholar] [PubMed]
  54. Kagan M, Tran P, Fischer V, Savage P, Smith T, et al. (2005) Safety, Pharmacokinetics (PK), Metabolism, and Mass Balance of [14C]-AMN107, a Novel Aminopyrimidine Inhibitor of Bcr-Abl Tyrosine Kinase, in Healthy Subjects. Blood 106: 4887-4887 [CrossRef] [Google Scholar]
  55. Abbas R, Chalon S, Leister C, El Gaaloul M, Sonnichsen D, et al. (2013) Evaluation of the pharmacokinetics and safety of bosutinib in patients with chronic hepatic impairment and matched healthy subjects. Cancer Chemother Pharmacol 71: 123-132 [CrossRef] [Google Scholar] [PubMed]
  56. Syed YY, McCormack PL, Plosker GL (2014) Bosutinib: a review of its use in patients with Philadelphia chromosome-positive chronic myelogenous leukemia. BioDrugs 28: 107-120 [CrossRef] [Google Scholar] [PubMed]
  57. Ramanathan RK, Egorin MJ, Takimoto CH, Remick SC, Doroshow JH, et al. (2008) Phase I and pharmacokinetic study of imatinib mesylate in patients with advanced malignancies and varying degrees of liver dysfunction: a study by the National Cancer Institute Organ Dysfunction Working Group. J Clin Oncol 26: 563-569 [CrossRef] [Google Scholar] [PubMed]
  58. Health Canada Bosulif (bosutinib): Product Monograph
  59. Gibbons J, Egorin MJ, Ramanathan RK, Fu P, Mulkerin DL, et al. (2008) Phase I and pharmacokinetic study of imatinib mesylate in patients with advanced malignancies and varying degrees of renal dysfunction: a study by the National Cancer Institute Organ Dysfunction Working Group. J Clin Oncol 26: 570-576 [CrossRef] [Google Scholar] [PubMed]
  60. Abrams P, Egorin M, Ramanathan R, Parise R, Lagattuta T, et al. (2004) Intrapatient consistency of imatinib pharmacokinetics (PK) in patients (pts) with advanced cancers. J Clin Oncol 22: 2081 [CrossRef] [Google Scholar]
  61. Champagne MA, Capdeville R, Krailo M, Qu W, Peng B, et al. (2004) Imatinib mesylate (STI571) for treatment of children with Philadelphia chromosome-positive leukemia: results from a Children's Oncology Group phase 1 study. Blood 104: 2655-2660 [CrossRef] [Google Scholar] [PubMed]
  62. Giannoudis A, Davies A, Lucas CM, Harris RJ, Pirmohamed M, et al. (2008) Effective dasatinib uptake may occur without human organic cation transporter 1 (hOCT1): implications for the treatment of imatinib-resistant chronic myeloid leukemia. Blood 112: 3348-3354 [CrossRef] [Google Scholar] [PubMed]
  63. Hiwase DK, Saunders V, Hewett D, Frede A, Zrim S, et al. (2008) Dasatinib cellular uptake and efflux in chronic myeloid leukemia cells: therapeutic implications. Clin Cancer Res 14: 3881-3888 [CrossRef] [Google Scholar] [PubMed]
  64. Filppula AM, Neuvonen M, Laitila J, Neuvonen PJ, Backman JT, et al. (2013) Autoinhibition of CYP3A4 leads to important role of CYP2C8 in imatinib metabolism: variability in CYP2C8 activity may alter plasma concentrations and response. Drug Metab Dispos 41: 50-59 [CrossRef] [Google Scholar] [PubMed]
  65. Hazarika M, Jiang X, Liu Q, Lee SL, Ramchandani R, et al. (2008) Tasigna for chronic and accelerated phase Philadelphia chromosome-positive chronic myelogenous leukemia resistant to or intolerant of imatinib. Clin Cancer Res 14: 5325-5331 [CrossRef] [Google Scholar] [PubMed]
  66. Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44: 879-894 [CrossRef] [Google Scholar] [PubMed]
  67. Brendel C, Scharenberg C, Dohse M, Robey RW, Bates SE, et al. (2007) Imatinib mesylate and nilotinib (AMN107) exhibit high-affinity interaction with ABCG2 on primitive hematopoietic stem cells. Leukemia 21: 1267- 1275 [CrossRef] [Google Scholar] [PubMed]
  68. Ozvegy-Laczka C, Hegedus T, Varady G, Ujhelly O, Schuetz JD, et al. (2004) High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 65: 1485-1495 [CrossRef] [Google Scholar] [PubMed]
  69. White DL, Saunders VA, Dang P, Engler J, Zannettino AC, et al. (2006) OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108: 697-704 [CrossRef] [Google Scholar] [PubMed]
  70. Melo JV (2006) Imatinib and ABCG2: who controls whom? Blood 108: 1116-1117 [CrossRef] [Google Scholar]
  71. Hamada A, Miyano H, Watanabe H, Saito H (2003) Interaction of imatinib mesilate with human P-glycoprotein. J Pharmacol Exp Ther 307: 824-828 [CrossRef] [Google Scholar] [PubMed]
  72. Houghton PJ, Germain GS, Harwood FC, Schuetz JD, Stewart CF, et al. (2004) Imatinib mesylate is a potent inhibitor of the ABCG2 (BCRP) transporter and reverses resistance to topotecan and SN-38 in vitro. Cancer Res 64: 2333-2337 [CrossRef] [Google Scholar] [PubMed]
  73. Burger H, van Tol H, Boersma AW, Brok M, Wiemer EA, et al. (2004) Imatinib mesylate (STI571) is a substrate for the breast cancer resistance protein (BCRP)/ABCG2 drug pump. Blood 104: 2940-2942 [CrossRef] [Google Scholar] [PubMed]
  74. Kompendium ch (2010) Switzerland: Compendium Suisse des médicaments
  75. Abbas R, Leister C, El Gaaloul M, Chalon S, Sonnichsen D (2012) Ascending single-dose study of the safety profile, tolerability, and pharmacokinetics of bosutinib coadministered with ketoconazole to healthy adult subjects. Clin Ther 34: 2011-2019 [CrossRef] [Google Scholar] [PubMed]
  76. Hsyu PH, Pignataro DS, Matschke K (2017) Effect of aprepitant, a moderate CYP3A4 inhibitor, on bosutinib exposure in healthy subjects. Eur J Clin Pharmacol 73: 49-56 [CrossRef] [Google Scholar] [PubMed]
  77. Johnson FM, Agrawal S, Burris H, Rosen L, Dhillon N, et al. (2010) Phase 1 pharmacokinetic and drug-interaction study of dasatinib in patients with advanced solid tumors. Cancer 116: 1582-1591 [CrossRef] [Google Scholar] [PubMed]
  78. Dutreix C, Peng B, Mehring G, Hayes M, Capdeville R, et al. (2004) Pharmacokinetic interaction between ketoconazole and imatinib mesylate (Glivec) in healthy subjects. Cancer Chemother Pharmacol 54: 290-294 [CrossRef] [Google Scholar] [PubMed]
  79. Cholongitas E, Pipili C, Katsogridakis K, Relos K, Dasenaki M, et al. (2008) Dermatitis after suspected imatinib-levothyroxine interaction in a patient with gastrointestinal stromal tumor. Cancer Chemother Pharmacol 61: 1083-1084 [CrossRef] [Google Scholar] [PubMed]
  80. de Groot JW, Zonnenberg BA, Plukker JT, van Der Graaf WT, Links TP, et al. (2005) Imatinib induces hypothyroidism in patients receiving levothyroxine. Clin Pharmacol Ther 78: 433-438 [CrossRef] [Google Scholar] [PubMed]
  81. Gambillara E, Laffitte E, Widmer N, Decosterd LA, Duchosal MA, et al. (2005) Severe pustular eruption associated with imatinib and voriconazole in a patient with chronic myeloid leukemia. Dermatology 211: 363-365 [CrossRef] [Google Scholar] [PubMed]
  82. Zhou SF, Xue CC, Yu XQ, Li C, Wang G (2007) Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit 29: 687-710 [CrossRef] [Google Scholar] [PubMed]
  83. van Erp NP, Gelderblom H, Karlsson MO, Li J, Zhao M, et al. (2007) Influence of CYP3A4 inhibition on the steady-state pharmacokinetics of imatinib. Clin Cancer Res 13: 7394-7400 [CrossRef] [Google Scholar] [PubMed]
  84. EMA Committee for Medicinal Products for Human Use (CHMP) (2013) Bosulif (bosutinibdasatinib): Assessment report
  85. Brave M, Goodman V, Kaminskas E, Farrell A, Timmer W, et al. (2008) Sprycel for chronic myeloid leukemia and Philadelphia chromosomepositive acute lymphoblastic leukemia resistant to or intolerant of imatinib mesylate. Clin Cancer Res 14: 352-359 [CrossRef] [Google Scholar] [PubMed]
  86. Frye RF, Fitzgerald SM, Lagattuta TF, Hruska MW, Egorin MJ, et al. (2004) Effect of St John's wort on imatinib mesylate pharmacokinetics. Clin Pharmacol Ther 76: 323-329 [CrossRef] [Google Scholar] [PubMed]
  87. Smith P, Bullock JM, Booker BM, Haas CE, Berenson CS, et al. (2004) The influence of St. John's wort on the pharmacokinetics and protein binding of imatinib mesylate. Pharmacotherapy 24: 1508-1514 [CrossRef] [Google Scholar] [PubMed]
  88. Bolton AE, Peng B, Hubert M, Krebs-Brown A, Capdeville R, et al. (2004) Effect of rifampicin on the pharmacokinetics of imatinib mesylate (Gleevec, STI571) in healthy subjects. Cancer Chemother Pharmacol 53: 102-106 [CrossRef] [Google Scholar] [PubMed]
  89. Smith PF, Bullock JM, Booker BM, Haas CE, Berenson CS, et al. (2004) Induction of imatinib metabolism by hypericum perforatum. Blood 104: 1229-1230 [CrossRef] [Google Scholar] [PubMed]
  90. Yin OQ, Gallagher N, Li A, Zhou W, Harrell R, et al. (2010) Effect of grapefruit juice on the pharmacokinetics of nilotinib in healthy participants. J Clin Pharmacol 50: 188-194 [CrossRef] [Google Scholar] [PubMed]
  91. Narasimhan NI, Dorer DJ, Niland K, Haluska F, Sonnichsen D (2013) Effects of ketoconazole on the pharmacokinetics of ponatinib in healthy subjects. J Clin Pharmacol 53: 974-981 [CrossRef] [Google Scholar] [PubMed]
  92. Kajita T, Higashi Y, Imamura M, Maida C, Fujii Y, et al. (2006) Effect of imatinib mesilate on the disposition kinetics of ciclosporin in rats. J Pharm Pharmacol 58: 997-1000 [CrossRef] [Google Scholar] [PubMed]
  93. Yokota A, Kimura S, Masuda S, Ashihara E, Kuroda J, et al. (2007) INNO- 406, a novel BCR-ABL/Lyn dual tyrosine kinase inhibitor, suppresses the growth of Ph+ leukemia cells in the central nervous system, and cyclosporine A augments its in vivo activity. Blood 109: 306-314 [CrossRef] [Google Scholar] [PubMed]
  94. van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35: 692-706 [CrossRef] [Google Scholar] [PubMed]
  95. O'Brien SG, Meinhardt P, Bond E, Beck J, Peng B, et al. (2003) Effects of imatinib mesylate (STI571, Glivec) on the pharmacokinetics of simvastatin, a cytochrome p450 3A4 substrate, in patients with chronic myeloid leukaemia. Br J Cancer 89: 1855-1859 [CrossRef] [Google Scholar] [PubMed]
  96. Demetri GD, Benjamin RS, Blanke CD, Blay JY, Casali P, et al. (2007) NCCN Task Force report: management of patients with gastrointestinal stromal tumor (GIST)-update of the NCCN clinical practice guidelines. J Natl Compr Canc Netw Suppl 2: 1-29 [Google Scholar] [PubMed]
  97. Ridruejo E, Cacchione R, Villamil AG, Marciano S, Gadano AC, et al. (2007) Imatinib-induced fatal acute liver failure. World J Gastroenterol 13: 6608-6111 [CrossRef] [Google Scholar] [PubMed]
  98. Rizack M, Hillman C (1998) The Medical Letter Handbook of Adverse Drug Interactions 1998. New Rochelle, NY: The Medical Letter Inc
  99. Hsyu PH, Pignataro DS, Matschke K (2017) Effect of bosutinib on the absorption of dabigatran etexilate mesylate, a P-glycoprotein substrate, in healthy subjects. Eur J Clin Pharmacol 73: 57-63 [CrossRef] [Google Scholar] [PubMed]
  100. Azuma M, Nishioka Y, Aono Y, Inayama M, Makino H, et al. (2007) Role of alpha1-acid glycoprotein in therapeutic antifibrotic effects of imatinib with macrolides in mice. Am J Respir Crit Care Med 176: 1243-1250 [CrossRef] [Google Scholar] [PubMed]
  101. Abbas R, Leister C, Sonnichsen D (2013) A clinical study to examine the potential effect of lansoprazole on the pharmacokinetics of bosutinib when administered concomitantly to healthy subjects. Clin Drug Investig 33: 589- 595 [CrossRef] [Google Scholar] [PubMed]
  102. Rassi FE, Khoury HJ (2013) Bosutinib: a SRC-ABL tyrosine kinase inhibitor for treatment of chronic myeloid leukemia. Pharmgenomics Pers Med 6: 57-62 [CrossRef] [Google Scholar] [PubMed]
  103. Pfizer Inc (2017) BOSULIF® (bosutinib) tablets: US prescribing information. View
  104. Eley T, Luo FR, Agrawal S, Sanil A, Manning J, et al. (2009) Phase I study of the effect of gastric acid pH modulators on the bioavailability of oral dasatinib in healthy subjects. J Clin Pharmacol 49: 700-709 [CrossRef] [Google Scholar] [PubMed]
  105. Breedveld P, Pluim D, Cipriani G, Wielinga P, van Tellingen O, et al. (2005) The effect of Bcrp1 (Abcg2) on the in vivo pharmacokinetics and brain penetration of imatinib mesylate (Gleevec): implications for the use of breast cancer resistance protein and P-glycoprotein inhibitors to enable the brain penetration of imatinib in patients. Cancer Res 65: 2577-2582 [CrossRef] [Google Scholar] [PubMed]
  106. DeAngelo DJ, Attar EC (2010) Use of dasatinib and nilotinib in imatinibresistant chronic myeloid leukemia: translating preclinical findings to clinical practice. Leuk Lymphoma 51: 363-375 [CrossRef] [Google Scholar] [PubMed]
  107. Xu Z, Cang S, Yang T, Liu D (2009) Cardiotoxicity of tyrosine kinase inhibitors in chronic myelogenous leukemia therapy. Hematol Rev 1: e4 [CrossRef] [Google Scholar] [PubMed]
  108. Hsyu PH, Mould DR, Abbas R, Amantea M (2014) Population pharmacokinetic and pharmacodynamic analysis of bosutinib. Drug Metab Pharmacokinet 29: 441-448 [CrossRef] [Google Scholar] [PubMed]
  109. Hsyu PH, Mould DR, Upton RN, Amantea M (2013) Pharmacokineticpharmacodynamic relationship of bosutinib in patients with chronic phase chronic myeloid leukemia. Cancer Chemother Pharmacol 71: 209-218 [CrossRef] [Google Scholar] [PubMed]
  110. Jabbour E, Kantarjian HM, Saglio G, Steegmann JL, Shah NP, et al. (2014) Early response with dasatinib or imatinib in chronic myeloid leukemia: 3-year follow-up from a randomized phase 3 trial (DASISION). Blood 123: 494-500 [CrossRef] [Google Scholar] [PubMed]
  111. Quintas-Cardama A, Kantarjian H, O'Brien S, Borthakur G, Bruzzi J, et al. (2007) Pleural effusion in patients with chronic myelogenous leukemia treated with dasatinib after imatinib failure. J Clin Oncol 25: 3908-3914 [CrossRef] [Google Scholar] [PubMed]
  112. Yu H, Steeghs N, Nijenhuis CM, Schellens JH, Beijnen JH, et al. (2014) Practical guidelines for therapeutic drug monitoring of anticancer tyrosine kinase inhibitors: focus on the pharmacokinetic targets. Clin Pharmacokinet 53: 305-325 [CrossRef] [Google Scholar] [PubMed]
  113. Porkka K, Khoury HJ, Paquette RL, Matloub Y, Sinha R, et al. (2010) Dasatinib 100 mg once daily minimizes the occurrence of pleural effusion in patients with chronic myeloid leukemia in chronic phase and efficacy is unaffected in patients who develop pleural effusion. Cancer 116: 377-386 [CrossRef] [Google Scholar] [PubMed]
  114. Takahashi N, Miura M, Kuroki J, Mitani K, Kitabayashi A, et al. (2014) Multicenter phase II clinical trial of nilotinib for patients with imatinibresistant or -intolerant chronic myeloid leukemia from the East Japan CML study group evaluation of molecular response and the efficacy and safety of nilotinib. Biomark Res 2: 6 [Google Scholar]
  115. Miura M (2015) Therapeutic drug monitoring of imatinib, nilotinib, and dasatinib for patients with chronic myeloid leukemia. Biol Pharm Bull 38: 645-654 [CrossRef] [Google Scholar] [PubMed]
  116. Yoshida C, Komeno T, Hori M, Kimura T, Fujii M, et al. (2011) Adherence to the standard dose of imatinib, rather than dose adjustment based on its plasma concentration, is critical to achieve a deep molecular response in patients with chronic myeloid leukemia. Int J Hematol 93: 618-623 [CrossRef] [Google Scholar] [PubMed]
  117. Ishikawa Y, Kiyoi H, Watanabe K, Miyamura K, Nakano Y, et al. (2010) Trough plasma concentration of imatinib reflects BCR-ABL kinase inhibitory activity and clinical response in chronic-phase chronic myeloid leukemia: a report from the BINGO study. Cancer Sci 101: 2186-2192 [CrossRef] [Google Scholar] [PubMed]
  118. Ohnishi K, Nakaseko C, Takeuchi J, Fujisawa S, Nagai T, et al. (2012) Long-term outcome following imatinib therapy for chronic myelogenous leukemia, with assessment of dosage and blood levels: the JALSG CML202 study. Cancer Sci 103: 1071-1078 [CrossRef] [Google Scholar] [PubMed]
  119. Miura M, Takahashi N (2013) Therapeutic drug management of BCR-ABL tyrosine kinase inhibitor for chronic myeloid leukemia patients. Rinsho Ketsueki 54: 1720-1729 [Google Scholar] [PubMed]
  120. Larson RA, Druker BJ, Guilhot F, O'Brien SG, Riviere GJ, et al. (2008) Imatinib pharmacokinetics and its correlation with response and safety in chronic-phase chronic myeloid leukemia: a subanalysis of the IRIS study. Blood 111: 4022-4028 [CrossRef] [Google Scholar] [PubMed]
  121. Picard S, Titier K, Etienne G, Teilhet E, Ducint D, et al. (2007) Trough imatinib plasma levels are associated with both cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia. Blood 109: 3496-3499 [CrossRef] [Google Scholar] [PubMed]
  122. Marin D, Bazeos A, Mahon FX, Eliasson L, Milojkovic D, et al. (2010) Adherence is the critical factor for achieving molecular responses in patients with chronic myeloid leukemia who achieve complete cytogenetic responses on imatinib. J Clin Oncol 28: 2381-2388 [CrossRef] [Google Scholar] [PubMed]
  123. Zhong JS, Meng FY, Xu D, Zhou HS, Dai M, et al. (2012) Correlation between imatinib trough concentration and efficacy in Chinese chronic myelocytic leukemia patients. Acta Haematol 127: 221-227 [CrossRef] [Google Scholar] [PubMed]
  124. Guilhot F, Hughes TP, Cortes J, Druker BJ, Baccarani M, et al. (2012) Plasma exposure of imatinib and its correlation with clinical response in the Tyrosine Kinase Inhibitor Optimization and Selectivity Trial. Haematologica 97: 731-738 [CrossRef] [Google Scholar] [PubMed]
  125. White DL, Radich J, Soverini S, Saunders VA, Frede AK, et al. (2012) Chronic phase chronic myeloid leukemia patients with low OCT-1 activity randomized to high-dose imatinib achieve better responses and have lower failure rates than those randomized to standard-dose imatinib. Haematologica 97: 907-914 [CrossRef] [Google Scholar] [PubMed]
  126. Li QB, Chen C, Chen ZC, Wang HX, Wu YL, et al. (2010) Imatinib plasma trough concentration and its correlation with characteristics and response in Chinese CML patients. Acta Pharmacol Sin 31: 999-1004 [CrossRef] [Google Scholar] [PubMed]
  127. Sohn SK, Oh SJ, Kim BS, Ryoo HM, Chung JS, et al. (2011) Trough plasma imatinib levels are correlated with optimal cytogenetic responses at 6 months after treatment with standard dose of imatinib in newly diagnosed chronic myeloid leukemia. Leuk Lymphoma 52: 1024-1029 [CrossRef] [Google Scholar] [PubMed]
  128. Wang Y, Chia YL, Nedelman J, Schran H, Mahon FX, et al. (2009) A therapeutic drug monitoring algorithm for refining the imatinib trough level obtained at different sampling times. Ther Drug Monit 31: 579-584 [CrossRef] [Google Scholar] [PubMed]
  129. Faber E, Friedecky D, Micova K, Rozmanova S, Divoka M, et al. (2012) Imatinib trough plasma levels do not correlate with the response to therapy in patients with chronic myeloid leukemia in routine clinical setting. Ann Hematol 91: 923-929 [CrossRef] [Google Scholar] [PubMed]
  130. Forrest DL, Trainor S, Brinkman RR, Barnett MJ, Hogge DE, et al. (2009) Cytogenetic and molecular responses to standard-dose imatinib in chronic myeloid leukemia are correlated with Sokal risk scores and duration of therapy but not trough imatinib plasma levels. Leuk Res 33: 271-275 [CrossRef] [Google Scholar] [PubMed]
  131. Singh N, Kumar L, Meena R, Velpandian T (2009) Drug monitoring of imatinib levels in patients undergoing therapy for chronic myeloid leukaemia: comparing plasma levels of responders and non-responders. Eur J Clin Pharmacol 65: 545-549 [CrossRef] [Google Scholar] [PubMed]
  132. Awidi A, Ayed AO, Bsoul N, Magablah A, Mefleh R, et al. (2010) Relationship of serum imatinib trough level and response in CML patients: long term follow-up. Leuk Res 34: 1573-1575 [CrossRef] [Google Scholar] [PubMed]
  133. Koren-Michowitz M, Volchek Y, Naparstek E, Gavish I, Levi I, et al. (2012) Imatinib plasma trough levels in chronic myeloid leukaemia: results of a multicentre study CSTI571AIL11TGLIVEC. Hematol Oncol 30: 200-205 [CrossRef] [Google Scholar] [PubMed]
  134. Kawaguchi T, Hamada A, Hirayama C, Nakashima R, Nambu T, et al. (2009) Relationship between an effective dose of imatinib, body surface area, and trough drug levels in patients with chronic myeloid leukemia. Int J Hematol 89: 642-648 [CrossRef] [Google Scholar] [PubMed]
  135. Ieiri I (2012) Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Drug Metab Pharmacokinet 27: 85-105 [CrossRef] [Google Scholar] [PubMed]
  136. Mo W, Zhang JT (2012) Human ABCG2: structure, function, and its role in multidrug resistance. Int J Biochem Mol Biol 3: 1-27 [Google Scholar] [PubMed]
  137. Kobayashi D, Ieiri I, Hirota T, Takane H, Maegawa S, et al. (2005) Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta. Drug Metab Dispos 33: 94-101 [CrossRef] [Google Scholar] [PubMed]
  138. Takahashi N, Miura M, Scott SA, Kagaya H, Kameoka Y, et al. (2010) Influence of CYP3A5 and drug transporter polymorphisms on imatinib trough concentration and clinical response among patients with chronic phase chronic myeloid leukemia. J Hum Genet 55: 731-737 [CrossRef] [Google Scholar] [PubMed]
  139. Petain A, Kattygnarath D, Azard J, Chatelut E, Delbaldo C, et al. (2008) Population pharmacokinetics and pharmacogenetics of imatinib in children and adults. Clin Cancer Res 14: 7102-7109 [CrossRef] [Google Scholar] [PubMed]
  140. Shinohara Y, Takahashi N, Nishiwaki K, Hino M, Kashimura M, et al. (2013) A multicenter clinical study evaluating the confirmed complete molecular response rate in imatinib-treated patients with chronic phase chronic myeloid leukemia by using the international scale of real-time quantitative polymerase chain reaction. Haematologica 98: 1407-1413 [CrossRef] [Google Scholar] [PubMed]
  141. Kim DH, Sriharsha L, Xu W, Kamel-Reid S, Liu X, et al. (2009) Clinical relevance of a pharmacogenetic approach using multiple candidate genes to predict response and resistance to imatinib therapy in chronic myeloid leukemia. Clin Cancer Res 15: 4750-4758 [CrossRef] [Google Scholar] [PubMed]
  142. Seong SJ, Lim M, Sohn SK, Moon JH, Oh SJ, et al. (2013) Influence of enzyme and transporter polymorphisms on trough imatinib concentration and clinical response in chronic myeloid leukemia patients. Ann Oncol 24: 756-760 [CrossRef] [Google Scholar] [PubMed]
  143. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, et al. (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122: 872-884 [CrossRef] [Google Scholar] [PubMed]
  144. Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, et al. (2010) Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med 362: 2251-2259 [CrossRef] [Google Scholar] [PubMed]
  145. Bosma PJ, Chowdhury JR, Bakker C, Gantla S, de Boer A, et al. (1995) The genetic basis of the reduced expression of bilirubin UDPglucuronosyltransferase 1 in Gilbert's syndrome. N Engl J Med 333: 1171- 1175 [CrossRef] [Google Scholar] [PubMed]
  146. Fujita K, Sugiyama M, Akiyama Y, Ando Y, Sasaki Y (2011) The smallmolecule tyrosine kinase inhibitor nilotinib is a potent noncompetitive inhibitor of the SN-38 glucuronidation by human UGT1A1. Cancer Chemother Pharmacol 67: 237-241 [CrossRef] [Google Scholar] [PubMed]
  147. Ai L, Zhu L, Yang L, Ge G, Cao Y, et al. (2014) Selectivity for inhibition of nilotinib on the catalytic activity of human UDP-glucuronosyltransferases. Xenobiotica 44: 320-325 [CrossRef] [Google Scholar] [PubMed]
  148. Larson RA, Yin OQ, Hochhaus A, Saglio G, Clark RE, et al. (2012) Population pharmacokinetic and exposure-response analysis of nilotinib in patients with newly diagnosed Ph+ chronic myeloid leukemia in chronic phase. Eur J Clin Pharmacol 68: 723-733 [CrossRef] [Google Scholar] [PubMed]
  149. Singer JB, Shou Y, Giles F, Kantarjian HM, Hsu Y, et al. (2007) UGT1A1 promoter polymorphism increases risk of nilotinib-induced hyperbilirubinemia. Leukemia 21: 2311-2315 [CrossRef] [Google Scholar] [PubMed]
  150. Abumiya M, Takahashi N, Niioka T, Kameoka Y, Fujishima N, et al. (2014) Influence of UGT1A1 6, 27, and 28 polymorphisms on nilotinib-induced hyperbilirubinemia in Japanese patients with chronic myeloid leukemia. Drug Metab Pharmacokinet 29: 449-454 [CrossRef] [Google Scholar] [PubMed]
  151. Giles FJ, Yin OQ, Sallas WM, le Coutre PD, Woodman RC, et al. (2013) Nilotinib population pharmacokinetics and exposure-response analysis in patients with imatinib-resistant or -intolerant chronic myeloid leukemia. Eur J Clin Pharmacol 69: 813-823 [Google Scholar]
  152. Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, et al. (2013) A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 369: 1783-1796 [CrossRef] [Google Scholar] [PubMed]
  153. Dorer DJ, Knickerbocker RK, Baccarani M, Cortes JE, Hochhaus A, et al. (2016) Impact of dose intensity of ponatinib on selected adverse events: Multivariate analyses from a pooled population of clinical trial patients. Leuk Res 48: 84-91 [CrossRef] [Google Scholar] [PubMed]
  154. Brummendorf TH, Cortes JE, de Souza CA, Guilhot F, Duvillie L, et al. (2015) Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukaemia: results from the 24-month follow-up of the BELA trial. Br J Haematol 168: 69-81 [CrossRef] [Google Scholar] [PubMed]
  155. Larson RA, Hochhaus A, Hughes TP, Clark RE, Etienne G, et al. (2012) Nilotinib vs imatinib in patients with newly diagnosed Philadelphia chromosome-positive chronic myeloid leukemia in chronic phase: ENESTnd 3-year follow-up. Leukemia 26: 2197-2203 [CrossRef] [Google Scholar] [PubMed]
  156. Atallah E, Durand JB, Kantarjian H, Cortes J (2007) Congestive heart failure is a rare event in patients receiving imatinib therapy. Blood 110: 1233-1237 [CrossRef] [Google Scholar] [PubMed]
  157. Bristol-Myers Squibb Company (2017) Sprycel (dasatinib) [package insert]
  158. ARIAD Pharmaceuticals Inc (12/2017) ICLUSIG® (ponatinib) [package insert]
  159. Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, et al. (2016) Final 5-Year Study Results of DASISION: The Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial. J Clin Oncol 34: 2333-2340 [CrossRef] [Google Scholar] [PubMed]
  160. Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DW, et al. (2016) Longterm benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia 30: 1044-1054 [CrossRef] [Google Scholar] [PubMed]
  161. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, et al. (2007) Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood 110: 3540-3546 [CrossRef] [Google Scholar] [PubMed]
  162. Dahlen T, Edgren G, Lambe M, Hoglund M, Bjorkholm M, et al. (2016) Cardiovascular Events Associated With Use of Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia: A Population-Based Cohort Study. Ann Intern Med 165: 161-166 [CrossRef] [Google Scholar] [PubMed]
  163. Breccia M, Loglisci G, Salaroli A, Serrao A, Alimena G (2012) Nilotinibmediated increase in fasting glucose level is reversible, does not convert to type 2 diabetes and is likely correlated with increased body mass index. Leuk Res 36: e66-67 [CrossRef] [Google Scholar] [PubMed]
  164. Rea D, Mirault T, Cluzeau T, Gautier JF, Guilhot F, et al. (2014) Early onset hypercholesterolemia induced by the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with chronic phase-chronic myeloid leukemia. Haematologica 99: 1197-1203 [CrossRef] [Google Scholar] [PubMed]
  165. Giles FJ, Mauro MJ, Hong F, Ortmann CE, McNeill C, et al. (2013) Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia 27: 1310-1315 [CrossRef] [Google Scholar] [PubMed]
  166. Lipton JH, Chuah C, Guerci-Bresler A, Rosti G, Simpson D, et al. (2016) Ponatinib versus imatinib for newly diagnosed chronic myeloid leukaemia: an international, randomised, open-label, phase 3 trial. Lancet Oncol 17: 612-621 [CrossRef] [Google Scholar]
  167. Jain P, Kantarjian H, Jabbour E, Gonzalez GN, Borthakur G, et al. (2015) Ponatinib as first-line treatment for patients with chronic myeloid leukaemia in chronic phase: a phase 2 study. Lancet Haematol 2: 376-383 [CrossRef] [Google Scholar] [PubMed]
  168. Rea D (2015) Management of adverse events associated with tyrosine kinase inhibitors in chronic myeloid leukemia. Ann Hematol 94 Suppl 2: 149-158 [CrossRef] [Google Scholar] [PubMed]
  169. Valent P, Hadzijusufovic E, Schernthaner GH, Wolf D, Rea D, et al. (2015) Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors. Blood 125: 901-906 [CrossRef] [Google Scholar] [PubMed]
  170. Ohnishi K, Sakai F, Kudoh S, Ohno R (2006) Twenty-seven cases of drug-induced interstitial lung disease associated with imatinib mesylate. Leukemia 20: 1162-1164 [CrossRef] [Google Scholar] [PubMed]
  171. Peerzada MM, Spiro TP, Daw HA (2011) Pulmonary toxicities of tyrosine kinase inhibitors. Clin Adv Hematol Oncol 9: 824-836 [Google Scholar] [PubMed]
  172. Go SI, Lee WS, Lee GW, Kang JH, Kang MH, et al. (2013) Nilotinib-induced interstitial lung disease. Int J Hematol 98: 361-365 [CrossRef] [Google Scholar] [PubMed]
  173. Shah NP, Wallis N, Farber HW, Mauro MJ, Wolf RA, et al. (2015) Clinical features of pulmonary arterial hypertension in patients receiving dasatinib. Am J Hematol 90: 1060-1064 [CrossRef] [Google Scholar] [PubMed]
  174. Kantarjian HM, Cortes JE, Kim DW, Khoury HJ, Brummendorf TH, et al. (2014) Bosutinib safety and management of toxicity in leukemia patients with resistance or intolerance to imatinib and other tyrosine kinase inhibitors. Blood 123: 1309-1318 [CrossRef] [Google Scholar] [PubMed]
  175. Quintas-Cardama A, Kantarjian H, Ravandi F, O'Brien S, Thomas D, et al. (2009) Bleeding diathesis in patients with chronic myelogenous leukemia receiving dasatinib therapy. Cancer 115: 2482-2490 [CrossRef] [Google Scholar] [PubMed]
  176. Quintas-Cardama A, Han X, Kantarjian H, Cortes J (2009) Tyrosine kinase inhibitor-induced platelet dysfunction in patients with chronic myeloid leukemia. Blood 114: 261-263 [CrossRef] [Google Scholar] [PubMed]
  177. Patodi N, Sagar N, Rudzki Z, Langman G, Sharma N (2012) Haemorrhagic colitis caused by dasatinib. Case Rep Hematol 2012: 417106 [CrossRef] [Google Scholar] [PubMed]
  178. Apperley JF (2015) Chronic myeloid leukaemia. Lancet 385: 1447-1459
  179. Shah RR, Morganroth J, Shah DR (2013) Hepatotoxicity of tyrosine kinase inhibitors: clinical and regulatory perspectives. Drug Saf 36: 491-503 [CrossRef] [Google Scholar] [PubMed]