
Comparative Pharmacology of Tyrosine Kinase Inhibitors for the 
Treatment of Chronic Myeloid Leukemia

Publication History:

Received: April 09, 2017
Accepted: April 26, 2018
Published: April 28, 2018

Keywords:

BCR/ABL tyrosine kinase inhibitor, 
Bosutinib, Ponatinib, Imatinib, 
Nilotinib, Dasatinib, Chronic 
myeloid leukemia, Pharmacology

Review Article Open Access

Introduction

Chronic myeloid leukemia (CML) is a myeloproliferative disorder 
produced by clonal proliferation of multipotential hematopoietic cells. 
It is a biphasic disease that presents a chronic early phase characterized 
by a massive expansion of myeloid precursor cells and mature cells 
that prematurely escape from the bone marrow but maintain their 
ability to differentiate normally. This phase is followed by an acute 
phase in the form of blast crisis, which can have a fatal outcome [1].

CML is characterized by the presence of the Philadelphia 
chromosome, due to a translocation between chromosomes 9 and 22 
that forms a fusion gene of Breakpoint cluster region (BCR)/Abelson 
murine leukemia gene (ABL)[2].

At present, there are 5 drugs for CML that act by inhibiting tyrosine 
kinases (TK) including, the ABL kinase, which is involved in the 
genesis of this disease. 

The first drug was imatinib, after which nilotinib, dasatinib, 
bosutinib, and ponatinib were developed. These drugs have different 
chemical structures and a different pharmacological profile.

This article aims to review the pharmacological characteristics of 
each of these drugs so that, as an expression of their strengths and 
weaknesses, conclusions can be drawn for clinical practice.

Chemical Structure

Table 1 describes the chemical structures of the 5 molecules. 
Bosutinib is a quinazoline [3,4], the other 4 drugs share a central 
pyrimidine-like structure [5-9]. Three of the drugs, imatinib, nilotinib, 
and posatinib are benzamides.
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These chemical differences can partly explain the selectivity of the 
pharmacological effect, the different involvement in pharmacological 
interactions by alteration of Cytochrome P450 (CYP), and the activity 
of some transporter proteins. Furthermore, some of the adverse effects 
shared by nilotinib and ponatinib may have their origin in the presence 
of a trifluorophenyl in the structure of both these compounds.

Pharmacodynamics

The most important event in CML is a reciprocal chromosomal 
translocation t(9;22)(q34;q11) that occurs in stem cells. It is a 
translocation between the long arms of chromosomes 9 and 22 
known as the Philadelphia chromosome and is present in up to 90% 
of patients with CML. The molecular consequence is the presence 
of a BCR/ABL chimeric gene on chromosome 22 and its reciprocal 
ABL/BCR on chromosome 9. The latter, unlike the first, does not 
have transcriptional activity and does not seem to have functional 
activity in CML development. In contrast, the BCR/ABL fusion 
gene is a constitutively activated TK capable of activating various 
transcriptional processes [10] and is found exclusively in the cytoplasm 
of cells forming complexes with cellular cytoskeleton proteins [11].
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Increased BCR/ABL TK activity phosphorylates diverse cellular 
substrates that alter the process of cell differentiation and proliferation. 
Activated substrates include various transcription activation signals: 
RAS/MAPK, PI-3 kinase (PI-3K), CBL and CRKL, and the JAK-STAT 
and SRC pathways [12-14].

Once activated, the ABL kinases regulate signaling involved in 
the reorganization of the cytoskeleton vital in cell protrusion, cell 
migration, morphogenesis, adhesion, endocytosis and phagocytosis, 
as well as the regulation of cell survival and proliferation pathways 
[15-17]. This aberrant signaling activity can give rise to various types 
of tumors, including CML.

With this background it is not surprising that identifying drugs that 
are able to inhibit ABL kinases is a priority to control tumor evolution, 
including CML.

The 5 available drugs inhibit various TKs, including BCR/ABL, 
but with different inhibitory profiles, which can potentially explain 
differences in efficacy and toxicity [18]. Table 2 summarizes the in 
vitro activity of the different BCR/ABL TK inhibitors (TKIs), obtained 
in a comparative study [19].

Table 2 shows that bosutinib is the only drug that does not inhibit 
C-KIT and that has a lower inhibition of platelet-derived growth 
factor (PDGFRα). These characteristics are important since the first 
is the membrane receptor of stem cell factor (SCF), also termed" steel 
factor" or "c-kit ligand", a polypeptide that activates the precursors of 
bone marrow blood cells and is also present in other cells.

C-KIT mutations in the interstitial cells of Cajal in the digestive 
tract can be key in the development of gastrointestinal stromal 
tumors (GIST). The C-KIT receptor is related to macrophage colony-
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Table 1: Structures, IUPAC chemical formula, and molecular weight of BCR/ABL inhibitors

Bosutinib (Quinazoline)
4-(2,4-dichloro-5-methoxyanilino)-6-methoxy-7-[3-(4-
methylpiperazin-1-yl)propoxy]quinoline-3-carbonitrile
Molecular weight: 531 g/mol

Dasatinib (Pyrimidine)
N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)
piperazin-1-yl]-2-methylpyrimidin-4-yl]amino]-1,3-
thiazole-5-carboxamide
Molecular weight: 488.01 g/mol

Imatinib (Pyrimidine)
4-[(4-methylpiperazin-1-yl)methyl]-N-[4-methyl-3-[(4-
pyridin-3-ylpyrimidin-2-yl)amino]phenyl]benzamide
Molecular weight: 493.6 g/mol

Nilotinib (Pyrimidine)
4-methyl-N-[3-(4-methylimidazol-1-yl)-5-(trifluoromethyl)
phenyl]-3-[(4-pyridin-3-ylpyrimidin-2-yl)amino]
benzamide
Molecular weight: 529.5 g/mol

Ponatinib (Pyrimidine)
3-(2-imidazo[1,2-b]pyridazin-3-ylethynyl)-4-methyl-N-
[4-[(4-methylpiperazin-1-yl)methyl]-3-(trifluoromethyl)
phenyl]benzamide
Molecular weight: 532.5 g/mol
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stimulating factor (CSF-1) and to PDGF, hence inhibiting C-KIT 
generates myelosuppression as an adverse event. C-KIT inhibition can 
also lead to cutaneous adverse events because C-KIT stimulates the 
proliferation and migration of melanoblasts and germ cells. On the 
other hand PDGF has an important role in embryogenic development, 
cell proliferation and migration and angiogenesis.

It is also noteworthy that ponatinib is active against BCR/ABL 
strains that are resistant to other drugs; however, it also inhibits 
kinases that may be related to adverse cardiac and vascular effects.

The activity of BCR/ABL inhibitors depends on the presence of 
resistance mutations. It is estimated that 20-30% of patients either 
do not respond to initial treatment (primary resistance) or relapse 
after the initial response [20,21]. Resistance to imatinib and to other 
BCR/ABL inhibitors can also occur because of infra therapeutic drug 
concentrations, due to lack of compliance by the patient, inadequate 
doses, alterations in the activity of the isoenzymes that metabolize the 
inhibitors, or alterations of the transporter proteins that are involved 
in the pharmacokinetic process [22-25]. There are some BCR/ABL 
mutations that are partially or completely resistant to BCR/ABL 
inhibition. For example, the BCR/ABL T315I mutation is resistant to 
all BCR/ABL inhibitors except ponatinib [9,26,27].

Pharmacokinetics

From the pharmacokinetic point of view, TKIs are characterized, 
as noted in Table 3, by oral absorption, a wide distribution within 
the total volume of body water, and the elimination through CYP450 
metabolism.

Absorption

The absolute bioavailability of these drugs ranges from 14% for 
dasatinib to 98% for imatinib. In general, absorption is slow with the 
maximum plasma concentration (Cmax) occurring between 0.5 and 
6 h [28-35].

There is proportionality between the Cmax and the area under the 
plasma concentration-time curve (AUC) with the dose administered 
for bosutinib, dasatinib, nilotinib and ponatinib. However, with 
dasatinib, the values of Cmax and AUC are higher when administered 
once a day compared with twice daily [36]; contrary to what happens 
with nilotinib [34,37].

At steady state, imatinib AUC increases 1.6-fold compared with the 
AUC of the first dose [38,39]. Similarly, there is an increase in Cmax at 
steady state for bosutinib (2-fold), nilotinib (3.8-fold), and ponatinib 
(1.5-fold) [32,34,40].

Effect of food on absorption

While the administration of bosutinib at a dose of 200 mg and 400 
mg to healthy volunteers together with food, increased Cmax and AUC 
values by 2-fold and 1.4-fold compared with fasting administration; 
no differences were found in the case of dasatinib, imatinib [41] or 
ponatinib [42]. The incidence and severity of the adverse events with 
bosutinib 400 mg in fasting conditions were similar to bosutinib 600 
mg administered with food, suggesting that administration with food 
improves tolerability [28].
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Bosutinib Dasatinib Imatinib Nilotinib Ponatinib

BCR/ABL 100 105 83 98 101

ABL(E255K) 99 101 38 88 101

ABL(T315I) 93 68 9 15 100

CAMK2G 96 -3 -7 4 -4

VEGFR 100 102 4 17 97

EPHA1 3 101 9 61 97

EPHA2 99 99 6 95 102

FGFR1 79 47 -1 -29 101

C-KIT 23 100 97 96 101

p38α 9 91 -2 92 101

PDGFRα 77 100 98 103 103

PDGFRβ 95 99 91 93 102

RET 95 73 2 31 102

SRC 96 101 5 23 102

TEC 58 101 -3 0 79

TIE2 22 16 0 41 101
Table 2. Relative activity of BCR/ABL inhibitors against different tyrosine kinases (adapted from Uitdehaag[19]).
Activity of BCR/ABL TKIs. The number represents the percentage of inhibition of tyrosine kinase activity at a concentration of 1μmol/l 
of each inhibitor.
Percentage inhibition of >95-100% noted in Red, 75-95% noted in Orange, 50-75% noted in Yellow, 25-50% noted in Blue, and <25% 
noted in Green.
BCR/ABL: breakpoint cluster region/Abelson murine leukemia gene; SRC: stored response chain, Sarcoma; TEC: Tec protein kinase; 
CAMK2G: Calcium/calmodulin dependent protein kinase; C-KIT: Mast/stem cell growth factor receptor; PDGFR: Platelet-derived 
growth factor receptor; EPHA: Ephrin tyrosine kinase; RET: rearranged during transfection proto-oncogene tyrosine kinase; TIE2: 
Angiopoietin 1 receptor; FGFR: fibroblast growth factor receptor; VEGFR: vascular endothelial growth factor receptor; TKI: tyrosine 
kinase inhibitor.
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Administration with a high-fat meal increases nilotinib Cmax and 
AUC by 112% and 82%, respectively. When nilotinib intake occurred 
30 minutes or 2 hours after the meal, the increase in bioavailability 
was 29% and 15%, respectively [43]. Therefore it is recommended to 
not eat any food in the 2 hours before and in the hour after taking 
nilotinib, so that the bioavailability increase does not lead to increased 
adverse events.

Distribution

In plasma, drugs in this class are found mostly protein bound to 
albumin and alpha-glycoprotein; in the case of nilotinib and imatinib 
especially to the latter. In animal models, it has been shown that high 
concentrations of α1 glycoprotein may be associated with an absence of 
response to imatinib. The administration of intravenous clindamycin, 
a drug that is fixed in high proportion to α1 glycoprotein, can reduce 
the bioavailability of imatinib up to 2.9-fold [44,45].

The volume of distribution of these drugs exceeds the body water 
content [31,34,35,46,47].

Dasatinib is able to slightly cross the blood-brain barrier with 
a plasma concentration of 0.05-0.28 ng/ml [48]. Imatinib diffuses 
marginally to CSF; however, the CSF levels are up to 74-fold lower 
than in plasma. This reduced diffusion is probably related to the fact 
that these drugs are a P-glycoprotein substrate, which limits diffusion 
to the nervous system [34,49,50].

Elimination

All drugs in this class are metabolized before elimination. As 
described in Table 4, several isoenzymes of CYP450 are involved in 
their metabolism, with potential drug-drug interactions. Bosutinib, 
dasatinib, imatinib and their respective metabolites are eliminated 
primarily in the faeces, while urinary excretion does not exceed 5% 
[31,35,39,51-54].

Bosutinib has the longest elimination half-life, with mean values 
ranging between 32.4 and 41.2 h, while dasatinib has the shortest half-
life (5.6 h) [31,32,52]. The other drugs have comparable half-lives, 
between 17-22 h.

Pharmacokinetics in special situations

Hepatic impairment

The Cmax and the AUC of bosutinib increased 2.42-fold and 2.25-
fold in patients with Child Pugh cirrhosis A, 1.99-fold and 2-fold in 
patients with Child Pugh B, and 1.52-fold and 1.91-fold in patients 
with Child Pugh C. The elimination half-life was 86, 113 and 111 h 
in each of the grades [55]. A dose adjustment is recommended in 
patients with hepatic impairment since there is a potential risk of QTc 
prolongation. This adverse event has not been described in patients 
who did not have liver function abnormalities [56].

Patients with abnormal liver function may have a 50% increase in 
the AUC of imatinib [57] as well as is probably the case for ponatinib 
[35].

In general, caution is recommended when using any of these drugs 
in patients with hepatic insufficiency.

Renal impairment

In patients with several renal impairment, the AUC and Cmax of 
bosutinib increased by 60% and 34%, respectively; and in patients 
with moderate renal impairment, the increase is 35% and 28%, 
respectively. The dose should be adjusted if creatinine clearance 
is below 50 ml/min [58]. In the case of dasatinib, Cmax and AUC 
are reduced in patients with moderate or severe renal insufficiency. 
Caution and close monitoring of patients with renal impairment is 
recommended [31].

The AUC0-24 of imatinib at steady state increases 2.1-fold in patients 
with moderate renal impairment [59,60].
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Bosutinib Dasatinib Imatinib Nilotinib Ponatinib

F (%) 33.8 14-34 98 30-50 -

Tmax (h) 3-6 0.5-3 1.5-6 3 4.6

Dose (mg) 500 100 400 400 45

Cmax (ng/ml) 112±29 29 1600 508 (2) 77

AUC (ng x h/ml) 2740±790 (1) 24.8 mg h/l 145656 1296

F. prot. (%) 96 96 95 (3) 98 (3) 99

V (l) 9560 2505 - 579 1101

Cl (l/h) 197 - - 29.1 3535

Ae (%) 1 0.1 5 <1 <1

t1/2 (h) 32-41 5.6 18 17 22

Food + AUC x 1.5 (5) - - + AUC 112% (4) -
Table 3: Main pharmacokinetic parameters of BCR/ABL inhibitors.
(1): Cmax once a day 66.8 ng/ml, twice a day 37.6 ng/ml. Cmin: 2.69 vs 5.3 ng/ml.
(2): 400 mg twice a day + 35% compared with once a day. 
(3): Alpha glycoprotein. 
(4): The increase in bioavailability requires twice daily administration without food 2 hours before and 1 hour following administration.
(5): Administration with food is recommended to improve tolerability.
F: bioavailabiity; Tmax: maximum plasma concentration time; Cmax: maximum concentration in plasma; AUC: area under the curve of plasma 
concentrations over time; F. prot.: percentage of protein fixation; V: distribution volume; Cl: clearance; Ae: percentage of active drug eliminated in 
urine; t1/2: mean elimination half-life; Food: influence of food on absorbtion. 
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In the absence of data on administering ponatinib to patients with 
renal impairment, it is advisable to also use caution in patients with 
moderate and severe renal insufficiency [35].

Pediatrics

In children, the Cmax values of imatinib at 260 mg/m2 and 340 mg/m2 

were 3.6 mg/l and 2.5 mg/L, respectively, with a Tmax of around 
3.5 h. When treating children with CML, the recommended dose of 
imatinib is 260-300 mg/m2/day [61].

Interactions

The 5 drugs are metabolized, to a greater or lesser extent, through 
isoenzymes of CYP450 (Table 4). In addition, these drugs are 
substrates and at times, inhibitors of the activity of transport proteins 
such as P-glycoprotein and breast cancer resistance protein BCRP. 
Table 5 summarizes the inhibitory activity of these drugs and Table 6 
details the various types of interactions.

Effect of BCR/ABL inhibitors on CYP450 and transport proteins

Bosutinib

Bosutinib is a CYP3A4 substrate, but is not a substrate for any of the 
remaining Cytochrome P450 (CYP). Furthermore, it does it seem to 
have the capacity to induce or inhibit these isoenzymes.

Dasatinib

Dasatinib is metabolized through the CYP3A4 isoenzyme. In vitro, 
it is a substrate of P-glycoprotein and BCRP but it does inhibit these 
transporters. Dasatinib is also a substrate of the human organic cation

transporter type 1 (hOCT1), although with a lower affinity than 
imatinib [62,63]. Dasatinib has inhibitory activity against CYP2C8, 
CYP3A4, CYP2C9 and CYP2A6.

Imatinib

Imatinib is mainly metabolised by CYP3A4, whereas CYP1A2, 
CYP2C9, CYP2C19, CYP2D6 and CYP3A5 play a smaller role. 
With long-term administration, imatinib tends to inhibit its own 
metabolism, and CYP2C8 becomes more relevant for its metabolism 
[64]. Imatinib is also a substrate of hOCT1, P-glycoprotein, and 
BCRP, and can inhibit the activity of these two last ones. It can also 
competitively inhibit the metabolism of drugs that are substrates of 
CYP2C9, CYP2C19, CYP2D6 and CYP3A4.

Nilotinib

Nilotinib is metabolized through CYP3A4, and is a substrate of 
P-glycoproteinand BCRP. In addition, it inhibits CYP2C8, CYP2C9, 
CYP2C19, CYP2D6, CYP3A4, UGT1A1, P-glycoprotein and BCRP, 
the latter in an important way [65]. In vitro, nilotinib has been shown 
to induce CYP2B6.

Ponatinib

Ponatinib is a CYP3A4/5 substrate and in smaller amounts is also 
a substrate of CYP2C8 and CYP2D6. Ponatinib is not a substrate, but 
it inhibits the activity of P-glycoprotein and BCRP, with reduced IC50 
values. Therefore, ponatinib has the potential to increase the plasma 
concentrations of drugs that are substrates of these transporter 
proteins such as: digoxin, pravastatin, dabigatran, methotrexate, or 
sulfasalazine [66-74].
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Enzymes Metabolites Metabolite activity

Bosutinib CYP3A4 Oxide chlorinated derivative (M2)
Demethylated derivative (M5)

Very reduced
Very reduced

Dasatinib CYP3A4 Oxide derivatives 
Derivatives conjugated with glucoronic acid

Inactive

Imatinib CYP3A4, CYP1A2, CYP2D6, 
CYP2C9, CYP2C19

N-desmetilimatinib Similar to imatinib

Nilotinib CYP3A4, CYP2C8, UGT1A1 Oxide derivatives 
Derivatives conjugated with glucoronic acid

Probably inactive

Ponatinib Amidases, esterases CYP3A4, 
CYP2C8, CYP2D6, CYP3A5

N-demethylated Inferior

Bosutinib Dasatinib Imatinib Nilotinib Ponatinib

P-glycoprotein (1) (2) (2) (2) 0.49 µM

BCRP (1) (2) (2) (2) (2) 0.03 µM

CYP2A6 (1) (2) 35 µM

CYP2D6 (1) (2) 7.5 µM (2) 1.46 µM

CYP3A4 (1) (2) 10 µM (2) 7.9 µM (2) 0.44 µM

CYP2C8 (1) (2) 12 µM (2) 34 µM (2) 0.23 µM

CYP2C9 (1) (2) 50 µM (2) 28 µM (2) 0.13 µM

UGT1A1 (1) (2) 0.19 µM

hOCT1 (2)
Table 5: Inhibitory activity of CYP3A4 and transport proteins.
(1): No inhibitory effect.
(2): IC50: Inhibitory concentration 50%.

Table 4: Metabolism and metabolite activity of BCR/ABL inhibitors.
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Mechanism BCR/ABL 
inhibitor

Drug Consequences/Recommendations

Potent CYP3A4 
inhibitors

All Boceprevir, clarithromycin, itraconazole, ketoconazole, lopinavir 
/ ritonavir, nefazodone, nelfinavir, indinavir, posaconazole, 
ritonavir, saquinavir, telaprevir, telithromycin, voriconazole, 
grape fruit juice.

Increased concentrations of BCR/ABL 
inhibitor. Avoid.

Moderate CYP3A4 
inhibitors

All Amprenavir, aprepitant, atazanavir, ciprofloxacin, darunavir / 
ritonavir, diltiazem, erythromycin, fluconazole, fosamprenavir, 
crizotinib, imatinib, verapamil, fruit juice.

Increased concentrations of BCR/ABL 
inhibitor. Avoid high doses.

Potent CYP3A4 
inducers

All Carbamazepine, oxcarbazepine, phenytoin, phenobarbital, 
rifampin, rifabutin, St. John's Wort.

Reduced concentrations of BCR/ABL 
inhibitor. Avoid.

Moderate CYP3A4 
inducers

All Bosentan, dexamethasone, efavirenz, etravirine, modafinil, 
nafcillin, nevirapine.

Reduced concentrations of BCR/ABL 
inhibitor. Consider increasing the dose of 
the BCR/ABL inhibitor.

Potent P-glycoprote 
ininhibitors

Imatinib, 
nilotinib, 
ponatinib

Amiodarone, azithromycin, captopril, carvedilol, clarithromycin, 
cyclosporine, diltiazem, dronedarone, erythromycin, felopdipine, 
itraconazole, ketoconazole, lopinavir, ritonavir, quercetin, 
quinidine, verapamil.

Increased concentrations of BCR/ABL 
inhibitor. Avoid.

Potent P-glycoprotein 
inducers

Imatinib, 
nilotinib, 
ponatinib

Carbamazepine, phenytoin, St. John's Wort, tipranavir/ritonavir. Reduced concentrations of BCR/ABL 
inhibitor. Avoid.

Potent BCRP 
inhibitors

Ponatinib Cyclosporine eltrombopag, gefitinib Increased concentrations of ponatinib. 
Exercise caution.

CYP3A4 substrates Dasatinib, 
imatinib, 
nilotinib, 
ponatinib

Alfentanil, aprepitant, astemizole, budesonide, buspirone, 
cisapride, cyclosporine, conivaptan, darifenacin, darunavir, 
dronedarone, eletriptan, eplerenome, ergotamine, everolimus, 
felodipine, fentanyl, fluticasone, indinavir, lopinavir, lovastatin, 
lurasidone, maraviroc, midazolam, nifedipine, nisoldipine, 
pimozide, quetiapine, saquinavir, sildenafil, somvastatin, 
sirolimus, tolvaptan, tipranavir, triazolam, vardenafil, triazolam.

Increased concentrations of CYP3A4 
substrates with an increased risk of toxicity. 
Avoid drugs with reduced therapeutic 
index. Exercise caution with the rest.

CYP2C9 substrates Dasatinib, 
imatinib, 
nilotinib

Acenocoumarol, celecoxib, diclofenac, phenytoin, warfarin, 
S-warfarin, tolbutamide.

Increased concentrations of CYP2C9 
substrates with an increased risk of toxicity. 
Avoid drugs with reduced therapeutic 
index. Exercise caution with the rest.

2D6 substrates Imatinib, 
nilotinib

Amitriptyline, aripiprazole, atomoxetine, carisoprodol, 
clomipramine, chlorpromazine, duloxetine, codeine, 
dextromethorphan, flecainide, haloperidol, imipramine, 
metoprolol, metoclopramide, mexiletine, mirtazapine, nevibolol, 
olanzapine, paroxetine, perphenazine, propafenone, R-warfarin, 
risperidone, tamoxifen, thioridazine, tolterodinetramadol, 
venlafaxine.

Increased concentrations of 2D6 substrates 
with an increased risk of toxicity. Avoid 
drugs with reduced therapeutic index. 
Exercise caution with the rest.

CYP2C8 substrates Imatinib, 
nilotinib

Rosiglitazone, pioglitazone, repaglinide, paclitaxel. Increased concentrations of CYP2C8 
substrates with an increased risk of toxicity. 
Avoid drugs with reduced therapeutic 
index. Exercise caution with the rest.

P-glycoprotein 
substrates

Imatinib, 
nilotinib, 
ponatinib

Aliskiren, ambrisentan, cyclosporine, colchicine, dabigatran, 
digoxin, everolimus, phenoxyphenadine, indinavir, maraviroc, 
nilotinib, paclitaxel, posaconazole, pravastatin, ritonavir, 
saxagliptin, sirolimus, sitagliptin, tolvactan, topotecan, 
verapamil, vincristine.

Increased concentrations of P-glycoprotein 
substrates with an increased risk of toxicity. 
Avoid drugs with reduced therapeutic 
index. Exercise caution with the rest.

BCRP substrates Dasatinib, 
imatinib, 
nilotinib, 
ponatinib

Daunorubicin, doxorubicin, lapatinib, methotrexate, 
mitoxantrone, irinotecan, rosuvastatin, sulfasalazine, topotecan.

Increased concentrations of BCRP 
substrates with an increased risk of toxicity. 
Avoid drugs with reduced therapeutic 
index. Exercise caution with the rest.

UGT1A1 substrates Nilotinib Atazanavir, dolutegravir, erlotinib, iritotecan, raltegravir. Increased concentrations of UGT1A1 
substrates with an increased risk of toxicity. 
Avoid drugs with reduced therapeutic 
index. Exercise caution with the rest.

UGT1A1 inhibitors Nilotinib Atazanavir, dolutegravir, efavirenz, ketoconazole, pazopanib, 
zafirlukast.

Increased concentrations of nilotinib with 
an increased potential for toxicity.

Table 6: Pharmacokinetic interactions of BCR/ABL inhibitors.
BCRP: breast cancer resistance protein.
UGT: uridinglucuronyl transferase.
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CYP450 interactions

As indicated, all BCR/ABL inhibitors are substrates of Cytochrome 
P450 (CYP); therefore, their rate of elimination can be altered by 
other drugs that increase or reduce the activity of these isoenzymes. 
In addition, dasatinib, imatinib, nilotinib, and ponatinib regulate 
CYP450 interaction since they can reduce the enzymatic activity of 
some of the isoenzymes. This characteristic is not shared by bosutinib, 
and is a better choice for the polymedicated patient, thereby avoiding 
potential drug-drug interactions.

Drugs that alter the metabolism of BCR/ABL inhibitors

The activity of isoenzymes can be increased (induced), except 
that of CYP2D6, or reduced (inhibited). With inhibition, there is a 
reduction in the rate of elimination of the drugs that are metabolized 
by the isoenzyme. Consequently, the drugs are accumulated in the 
body leading to an increased risk of toxicity that remains as long as the 
dose of the drug is not reduced. With induction, there is a reduction 
of the pharmacological activity of the drug because the drugs are 
eliminated too quickly from the body.

Bosutinib and dasatinib

As a CYP3A4 substrate, bosutinib experiences an increase in Cmax 
and AUC when combined with inhibitors of this isoenzyme, such as 
ketoconazole [29,75] or aprepitant [76]. On the other hand, when 
combining bosutinib with rifampicin, an enzyme inducer, there is 
a reduction in bosutinib bioavailability [30]. Similarly, concomitant 
administration of dasatinib and ketoconazole increased the AUC of 
dasatinib [77], whereas rifampicin reduced it.

Imatinib

All drugs that inhibit CYP3A activity may increase the bioavailability 
of imatinib, such as ketoconazole, levothyroxine, voriconazole or 
amiodarone. The same is not true for ritonavir; although it is a potent 
inhibitor of CYP3A4 activity, there is a compensatory mechanism 
of induction [78-83]. CYP3A inducers or P-glycoprotein, such as 
rifampin, carbamazepine, phenobarbital, phenytoin and St. John's 
Wort, can reduce the exposure of imatinib, potentially compromising 
its therapeutic activity. The administration of a single dose of 
rifampicin to 10 healthy volunteers reduced AUC of imatinib by 68%, 
along with a 24% increase in the AUC of the active metabolite [84]. 
Similar results were described with St. John’s Wort [85-89].

Nilotinib

The bioavailability of nilotinib increases when it is used in 
association with CYP3A4 inhibitors such as ketoconazole, which 
increase 3-fold the AUC of nilotinib [43]. Nilotinib intake with fruit 
juice can increase AUC by up to 60%. Conversely, administration of 
CYP3A4 inducers, such as rifampicin, reduces AUC 4.8-fold [90]. 

Ponatinib

With ponatinib, a dose reduction to 30 mg once a day is 
recommended when administered concomitantly with potent 
CYP3A4 inhibitors. When combining with ketoconazole, a CYP3A4 
inhibitor, there was an increase in ponatinib’s AUC0-∞, AUC0 to last 
quantifiable value, and Cmax of 78%, 70%, and 47%, respectively [91]. 

CYP3A4 inducers can lead to a reduction in systemic exposure of 
ponatinib, so associated use with carbamazepine, phenobarbital or 
rifampicin should be avoided.

Drugs whose metabolism is altered by BCR/ABL inhibitors

Bosutinib

As noted, bosutinib does not alter the activity of Cytocrome P450 
(CYP); however, the remaining 4 BCR/ABL TKIs do.

Dasatinib

Dasatinib behaves as an inhibitor of CYP450 activity so it reduces 
the clearance of drugs that are eliminated through this isoenzyme. 
This inhibitory effect may be time dependent [85]. A single dose of 
100 mg of dasatinib increased the AUC and Cmax of simvastatin, a 
known CYP3A4 substrate, by 20% and 37%, respectively. Therefore, 
CYP3A4 substrates with narrow therapeutic margins (eg, astemizole, 
terfenadine, cisapride, pimozide, quinidine, bepridil or ergot alkaloids 
[ergotamine, dihydroergotamine]) should be administered with 
caution in patients receiving dasatinib. There is also a potential risk 
of CYP2C8 inhibition, which may lead to increased concentrations of 
substrates of this isoenzyme such as glitazones.

Imatinib

Imatinib increases the intestinal absorption of cyclosporine 
through inhibition of P glycoprotein and the cytochrome CYP3A4, 
and may increase toxicity [92,93]. Co-administration of imatinib with 
metoprolol increased the bioavailability of metoprolol by 23% [94]. 
Compared with simvastatin alone, co-administration with imatinib 
had a 3-fold increase in the AUC of simvastatin and was associated 
with a 70% reduction in the clearance of simvastatin [95]. Relevant 
interactions have been described with other CYP3A4 substrates, such 
as verapamil and diltiazem, with increases in plasma concentration 
increase when co-administered with imatinib. Clinically relevant 
interactions with simvastatin, amiodarone and quinidine have 
been described and may also have clinical implications. Therefore, 
it is recommended to avoid these medications and look for safer 
alternatives when using imatinib [95].

Imatinib inhibits the glucuronidation of paracetamol, leading 
to hepatotoxicity and liver failure; so reduced doses of paracetamol 
are recommended when taking imatinib. As CYP2C9 substrates, 
acenocoumarol and phenprocoumon, have shown increased 
concentrations when co-administered with imatinib [96-98].

Co-adminsitration of imatinib and levothyroxine requires an 
increase in the dose of levothyroxine, up to 2-fold, probably due to 
the induction of uridine diphosphate glucuronyl transferase (UGT) 
activity [79,80].

Caution should be exercised when administering imatinib with other 
drugs that are substrates for cytochrome CYP3A, CYP2C9(warfarin), 
CYP2D6 (antidepressants, antipsychotics), P-glycoprotein (digoxin or 
dabigatran), and BCRP (mitoxantrone, topotecan and methotrexate).

Interactions with transport proteins

All BCR/ABL inhibitors, except bosutinib, are substrates of 
transport proteins such as P-glycoprotein, BCRP, or hOCT1. These
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proteins have the function of expelling the drug from inside the cells 
to prevent absorption, reduce distribution, or facilitate elimination. 
Therefore, concomitant administration with inhibitors or inducers 
of these proteins has consequences that are similar to inhibiting 
the isoenzymes that metabolize them: bioavailability increase or 
reduction.

Bosutinib

It has been suggested that bosutinib may be an inhibitor of 
P-glycoprotein, but clinical studies with dabigatran, a specific substrate 
of P-glycoprotein, have not shown any change in pharmacokinetics 
[99], allowing us to rule out the involvement of transport proteins in 
relevant interactions with bosutinib.

Dasatinib

Drugs that inhibit the activity of BCRP or CYP3A4, such as 
verapamil, erythromycin, clarithromycin, cyclosporine, ketoconazole, 
fluconazole, itraconazole and posaconazole, increase the bioavailability 
of dasatinib, with an increase in intracellular concentration. In turn, 
dasatinib can slightly inhibit transport proteins and moderately 
inhibit the activity of CYP3A4, changing the exposure of some 
drugs. Specifically, co-administration with dasatinib increases the 
bioavailability of simvastatin [83], and is not recommended with 
CYP3A4 substrates such as verapamil or diltiazem.

Imatinib

The administration of imatinib with a mixed inhibitor of CYP3A4 
and P-glycoprotein increased plasma concentrations and also 
intracellular concentrations of imatinib. There is a potential risk 
when co-administering imatinib with verapamil, erythromycin, 
clarithromycin, cyclosporine, ketoconazole, fluconazole, itraconazole, 
or posaconazole [92,100]. Similarly, some P-glycoprotein transport 
inhibitors, such as intraconazole or cyclosporine, can reduce biliary 
excretion or modify the passage of the drug into the blood-brain 
barrier. The inhibition of P-glycoprotein by proton pump inhibitors 
(PPIs), such as pantoprazole, increases intracerebral imatinib 
penetration. Interactions with quinidine, ranitidine or midazolam, 
known inhibitors of hOCT1, can paradoxically increase plasma 
concentration and reduce intracellular concentration [69].

Ponatinib

Ponatinib is not a substrate, but it inhibits the activity of 
P-glycoprotein and BCRP, with reduced IC50 values. Co-
administration of ponatinib can increase the plasma concentrations 
of drugs that are substrates of these transporter proteins such as: 
digoxin, pravastatin, dabigatran, methotrexate, or sulfasalazine.

Other interactions

The absorption of bosutinib is dose and pH-dependent. The 
solubility of bosutinib, like that of the other BCR/ABL TKIs, is 
reduced with increased gastric pH. Use of PPIs should be avoided so 
that the bioavailability of bosutinib is not reduced [101,102]. If pH 
reduction is required, H2 antacids or histamine antagonists should be 
used, to be taken about 2 hoursbefore or after the TKI is administered 
[56,103]. This interaction has also been described when dasatinib is 
administered with famotidine and omeprazole [104].

The use of antacids instead of H2-antagonists or PPIs should be 
evaluated in patients receiving treatment with bosutinib or dasatinib. 
The absorption of ponatinib is very dependent on solubility that is 
pH-dependent, so caution is recommended when using drugs that 
increase gastric pH.

Using imatinib with magnesium and aluminum salts is not 
associated with significant alterations in drug absorption [41,105].

In some clinical trials, QT prolongation was reported with 
dasatinib. Cardiac arrhythmias with death have been described, 
probably related to abnormalities of ventricular repolarization. Co-
administration with drugs that produce the same effect as digoxin, 
quinolones, methadone or various antipsychotics may increase the 
risk, for which a close electrocardiographic control of the patients 
is recommended [106,107]. Nilotinib has also been associated with 
QT prolongation and with cases of sudden death, so it should not be 
administered to patients who are receiving drugs that produce similar 
symptoms, alterations in congenital QT syndrome, hypokalemia or 
hypomagnesemia [106,107].

Monitoring plasma levels

PK/PD

The relationship between pharmacokinetics and efficacy or 
tolerability is of great clinical interest.

Bosutinib

In a population analysis conducted with bosutinib, a relationship 
between the bioavailability of the drug and the incidence of diarrhea 
was reported, after adjusting to a maximum effect model, Emax. 
The probability of developing diarrhea and rash was higher among 
patients with higher AUC values. There was no evidence of possible 
relationships between exposure to the drug and the incidence of other 
adverse events. No relationship was found between bosutinib AUC 
and major cytogenetic response (MCyR) at 24 weeks [108,109].

Dasatinib

A greater and faster response was achieved with dasatinib at a dose 
of 100 mg than with 400 mg of imatinib once a day; however, pleural 
effusion was reported as an adverse event in 19% of the patients 
treated with dasatinib and it required treatment discontinuation in 
29% of patients [110]. The efficacy of dasatinib is related to its mean 
concentration at steady state with optimal values of 14.16 ng/ml with 
100 mg once a day and 14.32 ng/ml with 50 mg twice a day [36]. Both 
pleural effusion and cytogenetic response are significantly related 
to the plasma concentration of dasatinib, with a 1.22-fold increased 
risk of effusion per each 1 ng/ml increase in minimum plasma 
concentration (Cmin) of dasatinib [36]. Throughout the phase I and 
phase II studies, pleural effusion has been reported less frequently 
when dasatinib is administered once a day versus administration 
twice a day [111,112].

It has been pointed out that the Cmin of dasatinib must not exceed 
2.5 ng/ml because the incidence of pleural effusion is significantly 
increased at higher levels. Therefore, the administration of 100 mg 
once daily appears to be the most reasonable dose to achieve efficacy, 
while reducing the incidence of adverse events [112,113].
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C2 (plasma concentration at 2 hours), Cmax and AUC of dasatinib 
are significantly lower in patients who have a T315I mutation in 
BCR/ABL than in those without the mutation. Therefore, in addition 
to adjusting Cmin, an adjustment to C2 or Cmax is recommended, 
aiming that these values are at 50 ng/ml to avoid increasing the 
risk of developing mutations in the BCR-ABL due to low exposure 
to dasatinib [114]. In addition, because dasatinib Cmax values 
correlate with complete cytogenetic response (CCyR), some authors 
recommend dosing the drug to reach a Cmax or C2 of approximately 
50 ng/ml and a Cmin below 2.5 ng/ml [115].

Imatinib

Imatinib has a high interpatient variability with coefficient of 
variation for AUC that ranges between 39% and 51%, with doses of 
400 and 600 mg, respectively. There is no relationship between drug 
exposure, body weight, and body surface. The influence of the CYP3A 
polymorphism does not justify the interpatient variability, which 
seems to be associated with P-glycoprotein polymorphism [38]. Cmin 
at steady state, after administration of 400 mg a day, ranges between 
100 ng/ml and 5000 ng/ml. In a Japanese population, interpatient 
variability has been described with a coefficient of variation between 
32.8% and 62.9% [116-118]. There is also a remarkable intraindividual 
variability, with coefficients of variation for Cmin between 8.4% and 
49.3% [119].

Several studies have indicated that patients who achieve imatinib 
concentrations below 1000 ng/ml have a significantly worse response 
when compared with those who achieve higher concentrations [120-
133]. Therefore, it is currently accepted that pre-dose concentration 
(Cmin) with imatinib should reach at least 1000 ng/ml [119,134]. 
Both median overall survival and progression-free survival have 
been associated with higher doses of imatinib. In fact, the cumulative 
incidence of CCyR or major molecular response (MMR) during the 
first 18 months of treatment was significantly lower in patients treated 
with 200 mg daily, compared with those who received 300 mg or 400 
mg. Therefore, in patients treated with doses of 300-400 mg who 
develop intolerance, the reduction of the dose to <200 mg should be 
avoided and treatment with other TKIs is recommended [118].

BCRP, is encoded by the ABCG2 gene (BCRP) and its fundamental 
function is to act as an efflux transport protein, primarily expressed 
in the small intestine and in the bile canaliculus [135,136]. In these 
locations, it is involved in the absorption, distribution and elimination 
of a large number of clinically relevant drugs, including imatinib. The 
presence of a polymorphism that affects a single nucleotide, mainly 
421C/A, significantly reduces the function of this transporter protein. 
The need to adjust the dose in relation to the concentration achieved 
was significantly lower in Japanese patients who presented genotype 
ABCG2 421C/C than in patients with other genotypes C/A or A/A 
[137]. It has also been described that the clearance of imatinib in 
patients with a 421C/A genotype is significantly lower than that of 
patients with a 421C/C genotype, therefore they have higher Cmin 
concentrations than those with a 421C/C genotype [138,139].

BCRP also contributes to the extracellular excretion of imatinib. 
Therefore, the presence of polymorphic genotypes can also affect 
the elimination of the drug. It has been described that 54% of the 
patients who achieved complete molecular response (CMR) had the 
421C/A allele, while 67% of the patients who did not reach CMR had 
the genotype 421C/C [140]. Several studies have shown an increased 
MMR in patients with genotype ABCG2 421C/A [139,141,142].

Imatinib, at the recommended dose of 400 mg a day, often has 
serious adverse events such as neutropenia, edema or skin rash, which 
result in poor compliance by the patient, the need to stop treatment 
early, and even therapeutic failure [143]. In fact, doses higher than 
400 mg a day have been associated with an increased incidence of 
adverse events and with the need to discontinue treament with 
imatinib. A Cmin greater than 3180 ng/ml has been associated with 
a high frequency of Grade 3/4 adverse events such as neutropenia 
[124]. Elevated Cmin has also been associated with cutaneous rash 
and edema [120,124]. In fact, imatinib Cmin greater than 3000 ng/ml 
should be avoided.

Nilotinib

Nilotinib also has great intraindividual variability, with coefficients 
of variation greater than 36.4%, hence the importance of performing 
periodic Cmin tests [119]. Fasting administration of nilotinib 
at a dose of 150 mg twice a day or 200 mg twice a day leads to a 
faster and more important response than that of imatinib 400 mg 
once a day [144]. CYP3A4, 2C8, 2C9, 2D6, and UGT1A, among 
others, intervene in the elimination of nilotinib [65]. UGT1A is 
responsible for the glucuronide conjugation of bilirubin, and upon 
competing for the enzyme, nilotinib leads to hyperbilirubinemia 
[145]. High exposure to nilotinib is associated with an increased 
incidence of hyperbilirubinemia [146,147]. The presence of UGT1A1 
polymorphisms is associated with especially high levels of bilirubin, 
specifically the genotype UGT1A1*28/*28 [148]. In clinical studies, 
the nilotinib-mediated inhibitory effect of UGT1A1 is important 
in patients who previously had a reduced metabolizing status for 
genotypes *6/*6, *6/*28, and *28/*28 [149]. In addition, in these 
patients, hyperbilirubinemia occurred within the first 3 weeks of 
treatment with nilotinib. Patients who present this risk of developing 
hyperbilirubinemia, should be treated with an initial dose of nilotinib 
of 150-200 mg twice a day, and it may even be preferable to choose 
another TKI due to the high risk for hyperbilirubinemia [150].

Although no significant correlation was found between the Cmin 
values of nilotinib at 12 months and MMR response [148], patients 
with nilotinib levels greater than 500 ng/ml required a significantly 
shorter time to reach the CCyR or MMR response [151].

The current recommendation for the optimal Cmin 
of nilotinib at steady state is 800 ng/ml after an initial 
administration of 600 mg a day [115]. At this concentration, 
patients with slow metabolization of UGT1A1 had a 50% 
incidence of Grade 3/4 hyperbilirubinemia. Therefore, for 
these patients the optimal concentration should be 500 ng/ml, 
although this can be associated with inefficiency.

Ponatinib

There is little information regarding ponatinib; although, in a phase I 
study a dependence of the response was observed, with the dose 
administered to patients with acute Ph+ lymphoblastic leukemia. 
Dose-dependent activity has also been described in a study 
performed in 43 Ph+ patients in whom a ≥50% reduction of CRKL 
phosphorylation, a surrogate for BCR-ABL inhibition, was observed 
in 67% and 94% of patients receiving doses of 8 and 15 mg respectively 
[40].

In a clinical trial, MCyR response at 15 months was significantly 
higher among patients who were between 18 and 44 years of age, or
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45 and 64 years old, compared with those who were older than 65 
years, with p<0.001 [152]. A relationship has been described between 
the incidence of adverse events and high doses of ponatinib, advanced 
age, duration of the disease, previous history of diabetes or ischemia, 
the baseline presence of neutrophilia, and high platelet numbers [153].

Table 7 summarizes the available data on monitoring plasma levels. 
The determination of concentrations should be performed at least at 
3, 6 and 12 months.

Tolerability

Establishing differences among the 5 drugs in the incidence and 
severity of adverse events is complicated. For example, nilotinib 
has a very low incidence of fluid retention, and probably has less 
haematological toxicity than the other TKIs; although it seems that 
the incidence of rash, headache, pancreatitis and cardiovascular 
effects is higher than that observed with imatinib. Dasatinib, on the 
other hand, less peripheral edema, but gastrointestinal toxicity and 
pleural effusion are more frequent than with imatinib. Bosutinib is 
characterized mainly by diarrhea, vomiting, and abdominal pain; 
however, there is less intensity of edema and muscle, and bone pain. 
Finally, ponatinib, when compared with imatinib, has a profile of 
important cardiovascular toxicity. In addition, it leads to higher 
incidence of rash, abdominal pain, headache, and pancreatitis, and 
lower nausea, muscle pain and diarrhea, than imatinib. In any case, 
the incidence of adverse events reported in clinical studies is relevant 
since more than 95% of patients reported some type of adverse event 
and about half of them needed a temporary discontinuation of the 
treatment or reduction of the dose. Many of these adverse events are 
related to hematological alterations that are resolved quickly.

Most of the adverse events occur during the first 3 months of 
treatment and can be handled easily, by reducing the dose or by 
interrupting the medication before Grade 3 or 4 toxicity appear. 
Surprisingly, despite the high incidence of adverse events and their 
apparent seriousness, there are few patients who need to permanently 
discontinue treatment for this reason (9-19%) [110,154,155].

Cardiovascular adverse events have been reported with imatinib. 
In a retrospective of 1276 patients, it was reported that 22 patients 
(1.7%) had heart failure, 11 of whom continued treatment after dose 
adjustment and heart failure management. Other TKIs have a lower 
cardiac toxicity profile, with cardiac events ranging from less than 1 to 
4% of patients treated with dasatinib or ponatinib; while they have not 
been described with dasatinib or with bosutinib [156-160].

QT prolongation has been described with all TKIs, although the 
highest frequency has been reported with nilotinib. During the 
clinical development phase of nilotinib, a few cases of sudden death

were reported. To evaluate potential risks, it is recommended to have 
an electrocardiogram (ECG) before treatment initiation, at 1 week 
after starting treatment, and when clinically indicated [34,37,161].

It has been suggested that treatment with nilotinib and dasatinib, 
compared with imatinib, carries an increased risk of arterial and 
venous events, as well as acute myocardial infarction [162]. It has also 
been described that nilotinib causes elevated blood glucose levels, 
hyperlipidemia, increased body mass index (BMI), as risk factors 
relevant to cardiovascular toxicity; although no thromboembolism 
events have been reported [163,164]. However, there is a higher 
indicence of peripheral arterial occlusive disease with nilotinib 
compared with imatinib, but not when compared with other controls 
that are not TKIs [165]. In a 6-year follow-up study, 10% of patients 
treated with nilotinib 300 mg twice daily were reported to have 
cardiovascular events, including 4% of patients with peripheral 
arterial occlusive events. In comparison, overall cardiovascular events 
were reported in 3% of patients in the control arm of imatinib [160]. 
Higher doses of nilotinib, 400 mg twice a day, which are approved for 
use in refractory or relapsed patients, report cardiovascular events in 
close to 16% of patients [160].

In a 5-year follow-up study of dasatinib, the incidence of ischemic 
alterations was 5% in the dasatinib arm compared with 2% in the 
imatinib arm [159]. In the case of bosutinib, the incidence of vascular 
arterial toxicity appears to be similar to that of imatinib [154]. 
However, ponatinib is associated with severe cardiovascular toxicity: 
8% arterial thrombosis, 5% acute myocardial infarction, 2% peripheral 
arterial occlusive disease, and 2% cerebrovascular events [158]. With 
this drug, incidences of serious arterial thrombotic events have been 
reported in 5-7% of patients [152,166], and some type of cardiac or 
vascular toxicity has been described in 49% of patients [167]. These 
findings occurred in the first clinical trials with ponatinib; this drug 
was withdrawn from commercialization in 2013 to continue the 
evaluation of toxicity. Cardiovascular toxicity related to TKIs has been 
described by several authors [168,169].

Pulmonary complications have been reported with imatinib and 
nilotinib, including interstitial lung disease (ILD) in less than 1% of 
patients [170-173]. All TKIs can have pericardial or pleural effusions 
as adverse events; however, dasatinib seems to stand out, with 
onestudy reporting an incidence of pleural effusion during the first 
year of 10%, which increased to 29% by the end of the study. Overall, 
20% of patients required discontinuation of dasatinib treatment due 
to this adverse event [159]. The frequency of pleural effusion appears 
to be higher with bosutinib than with imatinib. Three out of 250 
patients treated with bosutinib discontinued treatment as a result 
of a pleural effusion, compared with none of the patients receiving 
imatinib [154]. Pulmonary arterial hypertension related to the use 
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Dose/day Cmax (ng/ml) Cmin (ng/ml)

Bosutinib Probably does not require monitoring

Dasatinib 100 mg/day (QD) >50 (efficacy) <2.5 (tolerance)

Imatinib 400 mg/day (QD) >1000 (efficacy)
>3000 (tolerance)

Nilotinib 600 mg/day (BID) 800 (efficacy)

Ponatinib No information
Table 7: Monitoring plasma levels.
QD: once daily dosing.
BID: twice daily dosing.
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of dasatinib has been described in up to 5% of patients, some of which 
required discontinuation of treatment [159], although it is clinically 
reversible [173].

All TKIs have reported gastrointestinal adverse events, especially 
during the first 6 months of treatment. Imatinib, dasatinib, and 
bosutinib have similar rates of nausea, vomiting and abdominal 
pain; but, bosutinib has the highest incidence of diarrhea [154,174]. 
Dasatinib has reported the highest incidence of gastrointestinal 
hemorrhage, which has been attributed to alterations in platelet 
function and thrombocytopenia [175-177].

Elevation of pancreatic enzymes has been described, with nilotinib 
and ponatinib having the highest incidence. In the case of ponatinib, 
this adverse event is dose limiting in up to 7% of patients treated with 
the drug [152].

Elevation of liver enzymes has been reported with all TKIs, although 
the highest incidence occurs with nilotinib, bosutinib and ponatinib 
[178,179].
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