Profile
International Journal of Clinical Pharmacology & Pharmacotherapy Volume 1 (2016), Article ID 1:IJCPP-119, 3 pages
https://doi.org/10.15344/2456-3501/2016/119
Commentary
Convergent Signaling Pathways Suggest Potential Therapeutic Targets in Autism

Yu-Chih Lin

Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
Dr. Yu-Chih Lin, Laboratory of Neuronal Connectivity, Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA, Tel: (443)860-2580 (Ext. 733); E-mail: yclin@hussmanautism.org
10 December 2016; 15 December 2016; 17 December 2016
Lin YC (2016) Convergent Signaling Pathways Suggest Potential Therapeutic Targets in Autism. Int J Clin Pharmacol Pharmacother 1: 119. doi: https://doi.org/10.15344/2456-3501/2016/119
This work is supported by Hussman Foundation grant HIAS15003 to Y.-C. L.

References

  1. Huttenlocher PR, Dabholkar AS (1997) Regional differences in synaptogenesis in human cerebral cortex. J Comp Neurol 387: 167-178 [CrossRef] [Google Scholar] [PubMed]
  2. Amaral DG, Schumann CM, Nordahl CW (2008) Neuroanatomy of autism. Trends Neurosci 31: 137-145 [CrossRef] [Google Scholar] [PubMed]
  3. Donovan AP, Basson MA (2016) The neuroanatomy of autism - a developmental perspective. J Anat. [Epub ahead of print] [CrossRef] [Google Scholar] [PubMed]
  4. Palmen SJ, van Engeland H, Hof PR, Schmitz C (2004) Neuropathological findings in autism. Brain 127: 2572-2583 [CrossRef] [Google Scholar] [PubMed]
  5. Kazdoba TM, Leach PT, Yang M, Silverman JL, Solomon M, et al. (2016) Translational Mouse Models of Autism: Advancing Toward Pharmacological Therapeutics. Curr Top Behav Neurosci 28: 1-52 [CrossRef] [Google Scholar] [PubMed]
  6. Li J, Pelletier MR, Perez Velazquez JL, Carlen PL (2002) Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency. Mol Cell Neurosci 19: 138-151 [CrossRef] [Google Scholar] [PubMed]
  7. Huber KM, Gallagher SM, Warren ST, Bear MF (2002) Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A 99: 7746-7750 [CrossRef] [Google Scholar] [PubMed]
  8. Nakamoto M, Nalavadi V, Epstein MP, Narayanan U, Bassell GJ, et al. (2007) Fragile X mental retardation protein deficiency leads to excessive mGluR5-dependent internalization of AMPA receptors. Proc Natl Acad Sci U S A 104: 15537-15542 [CrossRef] [Google Scholar] [PubMed]
  9. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, et al. (1999) Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron 23: 583-592 [CrossRef] [Google Scholar] [PubMed]
  10. Verpelli C, Dvoretskova E, Vicidomini C, Rossi F, Chiappalone M, et al. (2011) Importance of Shank3 protein in regulating metabotropic glutamate receptor 5 (mGluR5) expression and signaling at synapses. J Biol Chem 286: 34839-34850 [CrossRef] [Google Scholar] [PubMed]
  11. Pignatelli M, Piccinin S, Molinaro G, Di Menna L, Riozzi B, et al. (2014) Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to homer proteins in the hippocampus of Ube3A hemizygous mice modeling angelman syndrome. J Neurosci 34: 4558-4566 [CrossRef] [Google Scholar] [PubMed]
  12. Michalon A, Bruns A, Risterucci C, Honer M, Ballard TM, et al. (2014) Chronic metabotropic glutamate receptor 5 inhibition corrects local alterations of brain activity and improves cognitive performance in fragile X mice. Biol Psychiatry 75: 189-197 [CrossRef] [Google Scholar] [PubMed]
  13. Michalon A, Sidorov M, Ballard TM, Ozmen L, Spooren W, et al. (2012) Chronic pharmacological mGlu5 inhibition corrects fragile X in adult mice. Neuron 74: 49-56 [CrossRef] [Google Scholar] [PubMed]
  14. de Vrij FM, Levenga J, van der Linde HC, Koekkoek SK, De Zeeuw CI, et al. (2008) Rescue of behavioral phenotype and neuronal protrusion morphology in Fmr1 KO mice. Neurobiol Dis 31: 127-132 [CrossRef] [Google Scholar] [PubMed]
  15. Tucker B, Richards RI, Lardelli M (2006) Contribution of mGluR and Fmr1 functional pathways to neurite morphogenesis, craniofacial development and fragile X syndrome. Hum Mol Genet 15: 3446-3458 [CrossRef] [Google Scholar] [PubMed]
  16. Pop AS, Levenga J, de Esch CE, Buijsen RA, Nieuwenhuizen IM, et al. (2014) Rescue of dendritic spine phenotype in Fmr1 KO mice with the mGluR5 antagonist AFQ056/Mavoglurant. Psychopharmacology (Berl) 231: 1227-1235 [CrossRef] [Google Scholar] [PubMed]
  17. Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, et al. (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50: 377-388 [CrossRef] [Google Scholar] [PubMed]
  18. Sharma A, Hoeffer CA, Takayasu Y, Miyawaki T, McBride SM, et al. (2010) Dysregulation of mTOR signaling in fragile X syndrome. J Neurosci 30: 694-702 [CrossRef] [Google Scholar] [PubMed]
  19. Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, et al. (2008) Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28: 5422-5432 [CrossRef] [Google Scholar] [PubMed]
  20. Ricciardi S, Boggio EM, Grosso S, Lonetti G, Forlani G, et al. (2011) Reduced AKT/mTOR signaling and protein synthesis dysregulation in a Rett syndrome animal model. Hum Mol Genet 20: 1182-1196 [CrossRef] [Google Scholar] [PubMed]
  21. Tsai PT, Hull C, Chu Y, Greene-Colozzi E, Sadowski AR, et al. (2012) Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice. Nature 488: 647-651 [CrossRef] [Google Scholar] [PubMed]
  22. Zhou J, Blundell J, Ogawa S, Kwon CH, Zhang W, et al. (2009) Pharmacological inhibition of mTORC1 suppresses anatomical, cellular, and behavioral abnormalities in neural-specific Pten knock-out mice. J Neurosci 29: 1773-1783 [CrossRef] [Google Scholar] [PubMed]
  23. Ehninger D, Silva AJ (2011) Rapamycin for treating Tuberous sclerosis and Autism spectrum disorders. Trends Mol Med 17: 78-87 [CrossRef] [Google Scholar] [PubMed]
  24. Fuchs C, Trazzi S, Torricella R, Viggiano R, De Franceschi M, et al. (2014) Loss of CDKL5 impairs survival and dendritic growth of newborn neurons by altering AKT/GSK-3β signaling. Neurobiol Dis 70: 53-68 [CrossRef] [Google Scholar] [PubMed]
  25. Mak BC, Kenerson HL, Aicher LD, Barnes EA, Yeung RS (2005) Aberrant beta-catenin signaling in tuberous sclerosis. Am J Pathol 167: 107-116. [CrossRef] [Google Scholar] [PubMed]
  26. Fuchs C, Rimondini R, Viggiano R, Trazzi S, De Franceschi M, et al. (2015) Inhibition of GSK3β rescues hippocampal development and learning in a mouse model of CDKL5 disorder. Neurobiol Dis 82: 298-310 [CrossRef] [Google Scholar] [PubMed]
  27. Della Sala G, Putignano E, Chelini G, Melani R, Calcagno E, et al. (2016) Dendritic Spine Instability in a Mouse Model of CDKL5 Disorder Is Rescued by Insulin-like Growth Factor 1. Biol Psychiatry 80: 302-311 [CrossRef] [Google Scholar] [PubMed]
  28. Khwaja OS, Ho E, Barnes KV, O'Leary HM, Pereira LM, et al. (2014) Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc Natl Acad Sci U S A 111: 4596-4601 [CrossRef] [Google Scholar] [PubMed]