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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental 
condition clinically diagnosed by differences in social interaction, 
communication, and behavior as described in the Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition (DSM-5). The 
Centers for Disease Control and Prevention (CDC) estimates that 
about 1 in 68 children has been identified with autism in the United 
States. Autism can be diagnosed as early as the first three years of life, 
a critical period for establishing the brain circuitry [1]. Anatomical 
brain changes and differences in neuronal connectivity are often 
found in individuals with autism [2-4]. However, comorbidity with 
other neurological conditions can complicate the diagnosis and 
treatment of autism. Although the risk factors for autism are highly 
heterogeneous, genetic alteration is a prominent contribution to the 
condition. Genome-wide association studies (GWAS) of individuals 
with autism and their family members have revealed numerous 
genes that are associated with increased risk of autism (autism-risk 
genes). Specific mutations or deletions of these particular genes 
in animal models mimic a variety autistic-like behaviors providing 
a system to experimentally study autism [5]. Intriguingly, a small 
number of intracellular signaling pathways are repeatedly disrupted 
in response to the experimental alteration of different autism-risk 
genes. What insights can we get from studying these pathways and 
what therapeutic interventions can we achieve with the manipulations 
of these pathways? These are key questions to ask for translating the 
laboratory research into clinical application. 

mGluR5 pathway

The group 1 metabotropic glutamate receptors (mGluR), 
including mGluR1 and mGluR5, are responsible for transducing 
signals from the neurotransmitter, glutamate, to activate protein 
synthesis in neurons. With its high expression in the cerebral cortex 
and hippocampus, the mGluR5 signaling pathway is essential for 
proper cortical development as well as the formation of learning 
and memory. mGluR5-dependent protein synthesis and synaptic 
plasticity are regulated by the expression of FMRP, the gene product 
of Fmr1, and the internalization of α-amino-3-hydroxy-5-Methyl-
4-isoxazolepropionate (AMPA) receptors in response to mGluR5 
activation [6]. Increases in AMPA receptor internalization and 
mGluR5-dependent long-term depression (LTD) were found in mouse 
models of Fragile X syndrome, a neurodevelopmental condition with 
FMR1 alterations that shows comorbid symptoms with autism [6-8]. 
Interestingly, the scaffolding protein SHANK3, also an autism-risk 
gene, was found to couple with several postsynaptic density proteins, 
including mGluR5 [9]. Knockdown of SHANK3 shows impaired 
mGluR5-mediated synaptic plasticity suggesting that this pathway is 
potentially altered in autism with SHANK3 mutations [10]. Similarly, 
alterations with Ube3a, another autism-risk gene, also show defective 
mGluR5-dependet synaptic plasticity [11]. Application of mGluR5 
antagonists, such as CTEP, MPEP, Fenobam, and Mavoglurant, has 
been shown to be promising in restoring some cellular phenotypes 
and experimentally in animal behaviors with Fmr1 alterations [12-
14,8,15,16]. Further investigation is necessary to determine whether 
these pharmacological agents can be clinically effective for individuals 
with autism carrying mutations other than FMR1.
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mTOR pathway

  The mammalian target of rapamycin (mTOR) is a ubiquitously 
expressed serine/threonine kinase that acts as a node of convergence 
downstream of several neuronal surface receptors, including 
N-methyl-D-aspartate receptors (NMDARs), AMPARs, and mGluRs, 
to regulate translation initiation in response to changes of synaptic 
activity. mTOR is also a common downstream regulator of several 
signaling pathways, including phosphatidylinositol 3-kinase (PI3K), 
AKT, and tuberous sclerosis complex proteins 1 and 2 (TSC1/2). 
Following mTOR activation, p70 ribosomal S6 kinase 1 and 2 
(S6K1/2) and the eIF4E-binding proteins (4E-BPs), two important 
units of the translation initiation machinery, are activated and 
repressed, respectively. In addition, mTOR phosphorylates protein 
kinase C (PKC) to regulate cytoskeletal assembly in neurons as part 
of the synaptic plasticity. Several experimental animals with genetic 
alterations of autism-risk genes Pten[17], Fmr1[18], Tsc1/2[19], or 
Mecp2[20] show defective synaptic plasticity and these animals have 
been identified with disruptions in the mTOR pathway. Interestingly, 
the mTOR pathway is upregulated in mice carrying defective gene 
products of Pten, Tsc1/2, or Fmr1, but downregulated in Mecp2-null 
mice. The mTOR inhibitor rapamycin (or Sirolimus) is originally 
used as an immunosuppressant to prevent organ rejection after 
a kidney transplant. Effective therapeutic results of rapamycin to 
ameliorate some of the autistic-like symptoms have been shown in 
animals bearing the autism-associated gene alterations [21-23]. 
The clinical trial of rapamycin application for autism is underway, 
however, determining how to minimize potential side effects caused 
by the extensive functions of mTOR pathway still requires further 
investigation. 

GSK3β pathway

  GSK3β is a serine/threonine kinase that is inactivated by 
phosphorylation. Several signaling molecules have been identified 
to regulate GSK3β activity. For example, receptor tyrosine kinases 
activate PI3K and AKT to phosphorylate GSK3β to turn off its activity 
to regulate cell survival. Alternatively, the small RhoGTPase Cdc42 
is also activated by PI3K and subsequently activates Par complex to 
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phosphorylate GSK3β and regulates cytoskeletal machinery to control 
cell polarity and directed migration. In addition, the conical Wnt 
signaling regulates GSK3β inactivation via β-catenin and disheveled 
to function in axonal growth and migration. The hyperactivation 
of GSK3β pathway is often found in several mutant animals with 
certain autism-risk genes, including Cdk5l[24], Pten[17], and Tsc1/2 
[25]. Inhibition of GSK3β activity by insulin growth factor 1 (IGF-
1) administration or GSK3β inhibitors (e.g. lithium, SB216763) can 
rescue the dendritic phenotype and some autistic-like behaviors in 
these mutant mice [25-27]. In fact, lithium has been commonly used 
in the clinical practice as a mood stabilizer in several psychiatric 
conditions, including autism. In addition, IGF-1 is currently in 
clinical trials for several neuropsychiatric conditions, such as Rett’s 
syndrome, which exhibits comorbidity with autism [28].

Conclusion

 Because of the highly heterogeneous gene mutations found 
in individuals with autism, it is challenging to pinpoint which 
genes should be prioritized in the study of autism. As a result, 
several available medications target the symptoms rather than the 
physiological mechanisms that are altered in autism. A growing 
amount of experimental evidence has shown that signaling pathways 
involving mGluR5, mTOR, and GSK3β are often disrupted when a 
subset of the autism-risk genes are altered. Interestingly, all three 
pathways can be further linked together, as GSK3β and mTOR are 
both regulated by PI3K/AKT, which are activated by PTEN, a dual-
specificity lipid/protein tyrosine phosphatase, in response to the 
activation of membrane-bound receptors, including mGluR5. The 
crosstalk among these signaling molecules further emphasizes the 
notion that autism may involve the disruption of selective pathways 
that are common to numerous specific risk genes. Further research 
should focus on exploring in detail the molecular mechanisms and 
the signaling pathways underlying autistic behaviors. Understanding 
the molecular mechanisms of the affected pathways will help us design 
targeted therapeutic interventions to provide effective treatment for 
autism.
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