Profile
International Journal of Clinical & Medical Microbiology Volume 2 (2017), Article ID 2:IJCMM-122, 4 pages
https://doi.org/10.15344/2456-4028/2017/122
Research Article
Doxycycline induces SLT2 phosphorylation in Candida glabrata

Hala Almshawit* and Ian Macreadie

School of Applied Sciences, RMIT University, 124 La Trobe St, Melbourne VIC 3000, Australia
Dr. Hala Almshawit, School of Applied Sciences, RMIT University, 124 La Trobe St, Melbourne VIC 3000, Australia; E-mail: hala.almshawit@gmail.com
08 March 2017; 25 June 2017; 27 June 2017
Almshawit H, Macreadie I (2017) Doxycycline induces SLT2 phosphorylation in Candida glabrata. Int J Clin Med Microbiol 2: 122. doi: https://doi.org/10.15344/2456-4028/2017/122

References

  1. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, et al. (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36: 288-305 [CrossRef] [Google Scholar] [PubMed]
  2. Nakayama H, Izuta M, Nagahashi S, Sihta EY, Sato Y, et al. (1998) A controllable gene-expression system for the pathogenic fungus Candida glabrata. Microbiol 144: 2407-2415 [CrossRef] [Google Scholar] [PubMed]
  3. Zordan RE, Ren Y, Pan SJ, Rotondo G, De Las Penas A, et al. (2013) Expression plasmids for use in Candida glabrata. G3 (Bethesda) 3: 1675- 1686 [CrossRef] [Google Scholar] [PubMed]
  4. Wishart JA, Hayes A, Wardleworth L, Zhang N, Oliver SG (2005) Doxycycline, the drug used to control the tet-regulatable promoter system, has no effect on global gene expression in Saccharomyces cerevisiae. Yeast 22: 565-569 [CrossRef] [Google Scholar] [PubMed]
  5. Kim HS, Luo L, Pflugfelder SC, Li DQ (2005) Doxycycline inhibits TGFbeta1- induced MMP-9 via Smad and MAPK pathways in human corneal epithelial cells. Invest Ophthalmol Vis Sci 46: 840-848 [CrossRef] [Google Scholar] [PubMed]
  6. Almshawit H, Pouniotis D, Macreadie I (2014) Cell density impacts on Candida glabrata survival in hypo-osmotic stress. FEMS Yeast Res 14: 508-516 [CrossRef] [Google Scholar] [PubMed]
  7. Matsuo Y, Granneman S, Thoms M, Manikas RG, Tollevery D, et al. (2014) Coupled GTPase and remodelling ATPase activities form a checkpoint for ribosome export. Nat 505:112-116 [CrossRef] [Google Scholar] [PubMed]
  8. Fiori A, Van Dijck P (2012) Potent synergistic effect of doxycycline with fluconazole against Candida albicans is mediated by interference with iron homeostasis. Antimicrob Agents Chemother 56: 3785-3796 [CrossRef] [Google Scholar] [PubMed]
  9. Levin DE (2005) Cell Wall Integrity Signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 69: 262-291 [CrossRef] [Google Scholar] [PubMed]
  10. Almshawit H (2016) Studies on the effect of thymoquinone on oxidative stress and cell wall integrity of Candida glabrata, PhD thesis, pp. 135
  11. Prasad T, Chandra A, Mukhopadhyay CK, Prasad R (2006) Unexpected link between iron and drug resistance of Candida spp.: iron depletion enhances membrane fluidity and drug diffusion, leading to drug-susceptible cells. Antimicrob Agents Chemother 50: 3597-606 [CrossRef] [Google Scholar] [PubMed]
  12. Shakoury-Elizeh M, Protchenko O, Berger A, Cox J, Gable K, et al. (2010) Metabolic response to iron deficiency in Saccharomyces cerevisiae.J Biol Chem 285: 14823-14833 [CrossRef] [Google Scholar] [PubMed]
  13. Oliver BG, Silver PM, Marie C, Hoot SJ, Leyde SE, White TC (2008) Tetracycline alters drug susceptibility in Candida albicans and other pathogenic fungi. Microbiol, 154: 960-970 [CrossRef] [Google Scholar] [PubMed]
  14. Angrave FE, Avery SV (2001) Antioxidant functions required for insusceptibility of Saccharomyces cerevisiae to tetracycline antibiotics. Antimicrob Agents Chemother 45: 2939-2942 [CrossRef] [Google Scholar] [PubMed]