Profile
International Journal of Pediatrics & Neonatal Care Volume 6 (2020), Article ID 6:IJPNC-165, 2 pages
https://doi.org/10.15344/2455-2364/2020/165
Expert Opinion
Immune Responses to Coronaviruses with Emphasis in Children

Chandra Sekhar Devulapalli

Senior Medical Consultant and Paediatrician, Norwegian Labour and Welfare Administration (NAV), work and benefits Kristiania, Oslo, Norway
Dr. Chandra Sekhar Devulapalli, Senior Medical Consultant and Paediatrician, Norwegian Labour and Welfare Administration (NAV), work and benefits Kristiania, Oslo, Norway; E-mail: chandev@gmail.com
22 April 2020; 14 May 2020; 16 May 2020
Devulapalli CS (2020) Immune Responses to Coronaviruses with Emphasis in Children. Int J Pediatr Neonat Care 6: 165. doi: https://doi.org/10.15344/2455-2364/2020/165

References

  1. van der Hoek L, Pyrc K, Berkhout B (2006) Human coronavirus NL63, a new respiratory virus. FEMS Microbiol Rev 30: 760-773. [CrossRef] [Google Scholar] [PubMed]
  2. Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, et al. (2005) Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A 102: 7988-7993. [CrossRef] [Google Scholar] [PubMed]
  3. Lim YX, Ng YL, Tam JP, Liu DX (2016) Human coronaviruses: a review of virus-host interactions. Diseases. [CrossRef] [Google Scholar] [PubMed]
  4. Devulapalli CS (2020) Covid-19 - a mild disease in children. Journal NorLegeforen 2020.
  5. Munthe LA (2020) The coronavirus - cross immunity, herd immunity and vaccine development. Journal Nor Legeforen.
  6. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, et al. (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203: 631-637. [CrossRef] [Google Scholar] [PubMed]
  7. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, et al. (2004) SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181: 271-280. [CrossRef] [Google Scholar] [PubMed]
  8. Jia HP, Look DC, Shi L, Hickey M, Pewe L, et al. (2005) ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia. J Virol 79: 14614-14621. [CrossRef] [Google Scholar] [PubMed]
  9. Guan WJ, Ni ZY, Hu Y, Liang W, Ou C, et al. (2020) Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. [CrossRef] [Google Scholar]
  10. Wang D, Hu B, Hu C, Zhu F, Liu X, et al. (2020) Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 323: 1061. [CrossRef] [Google Scholar] [PubMed]
  11. Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, et al. (2020) Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation. [CrossRef] [Google Scholar] [PubMed]
  12. Liu W, Fontanet A, Zhang PH, Zhan L, Xin ZT, et al. (2006) Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis 193: 792-795. [CrossRef] [Google Scholar] [PubMed]
  13. Payne DC, Iblan I, Rha B, Alqasrawi S, Haddadin A, et al. (2016) Persistence of Antibodies against Middle East Respiratory Syndrome Coronavirus. Emerg Infect Dis 22: 1824-18246. [CrossRef] [Google Scholar] [PubMed]
  14. Raj VS, Mou H, Smits SL, Dekkers DH, Müller MA, et al. (2013) Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495: 251-254. [CrossRef] [Google Scholar] [PubMed]
  15. Ebihara T, Endo R, Ma X, Ishiguro N, Kikuta H, et al. (2005) Detection of human coronavirus NL63 in young children with bronchiolitis. J Med Virol 75: 463-465. [CrossRef] [Google Scholar] [PubMed]
  16. Kaiser L, Regamey N, Roiha H, Deffernez C, Frey U, et al. (2005) Human coronavirus NL63 associated with lower respiratory tract symptoms in early life. Pediatr Infect Dis J 24: 1015-1017. [CrossRef] [Google Scholar] [PubMed]
  17. van der Hoek L, Ihorst G, Sure K, Vabret A, Dijkman R, et al. (2010) Burden of disease due to human coronavirus NL63 infections and periodicity of infection. J Clin Virol 48: 104-108. [CrossRef] [Google Scholar] [PubMed]
  18. Dijkman R, Jebbink MF, Gaunt E, Rossen JW, Templeton KE, et al. (2012) The dominance of human coronavirus OC43 and NL63 infections in infants. J Clin Virol 53: 135-139. [CrossRef] [Google Scholar] [PubMed]
  19. Chan KH, Cheng VC, Woo PC, Lau SK, Poon LL, et al. (2005) Serological responses in patients with severe acute respiratory syndrome coronavirus infection and cross-reactivity with human coronaviruses 229E, OC43, and NL63. Clin Diagn Lab Immunol 12: 1317-1321. [CrossRef] [Google Scholar] [PubMed]
  20. Li W, Sui J, Huang IC, Kuhn JH, Radoshitzky SR, et al. (2007) The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2. Virology 367: 367-374. [CrossRef] [Google Scholar] [PubMed]
  21. Zhao J, Zhao J, Mangalam AK, Channappanavar R, Fett C, et al. (2016) Airway Memory CD4(+) T Cells mediate protective immunity against emerging respiratory coronaviruses. Immunity 44: 1379-1391. [CrossRef] [Google Scholar] [PubMed]
  22. Channappanavar R, Fett C, Zhao J, Meyerholz DK, Perlman S, et al. (2014) Virus-specific memory CD8 T cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol 88: 11034-11044. [CrossRef] [Google Scholar] [PubMed]
  23. Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, et al. (2016) Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine 34: 2008-2014. [CrossRef] [Google Scholar] [PubMed]
  24. Chen L, Xiong J, Bao L, Shi Y (2020) Convalescent plasma as a potential therapy for COVID-19. LancetInfect Dis 20: 398-400. [CrossRef] [Google Scholar] [PubMed]
  25. Casadevall A, Pirofski LA (2020) The convalescent sera option for containing COVID-19. J Clin Invest 130: 1545-1548. [CrossRef] [Google Scholar] [PubMed]