Profile
International Journal of Earth & Environmental Sciences Volume 7 (2022), Article ID 7:IJEES-193, 6 pages
https://doi.org/10.15344/2456-351X/2022/193
Original Article
Greenhouse Gases in Soils of the Coconino National Forest that have been Burned by Wildfires

Timothy L. Porter1,* and Thomas R. Dillingham2

1University of Nevada Las Vegas, Department of Physics and Astronomy, Las Vegas, NV, 89154, USA
2Northern Arizona University, Department of Applied Physics and Materials Science, Flagstaff, AZ, 86001, USA
Prof. Timothy Porter, University of Nevada Las Vegas, Department of Physics and Astronomy, Las Vegas, NV, 89154, USA; E-mail: tim.porter@unlv.edu
07 January 2022; 24 January 2022; 26 January 2022
Porter TL, Dillingham TR (2022) Greenhouse Gases in Soils of the Coconino National Forest that have been Burned by Wildfires. Int J Earth Environ Sci 7: 193 doi: https://doi.org/10.15344/2456-351X/2022/193

References

  1. Bond-Lamberty B, Thomson A (2010) Temperature Associated Increases in the Global Soil Respiration Record. Nature 123: 99-117. [CrossRef] [Google Scholar] [PubMed]
  2. Davidson EA, Janssens LA (2006) Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change. Nature 440: 165-173. [CrossRef] [Google Scholar]
  3. Gouklen ML, Munger JW, Fan SM, Daube BC, Wofsy SC, et al. (1996) Measurements of Carbon Sequestration by Long Term Eddy Covariance Methods in a Critical Evaluation of Accuracy. Global Change Biol 2: 169-182. [CrossRef] [Google Scholar]
  4. Law BE, Ryan MG, Anthoni PM (1999) Seasonal and Annual Respiration in a Ponderosa Pine Ecosystem. Global Change Biol 5: 169-182. [CrossRef] [Google Scholar]
  5. Raich JW, Schlessinger WH (1992) The Golbal Carbon Dioxide Flux in Soil Respiration and its Relationship to Vegatation and Climate. Tellus 44: 81-99. [CrossRef] [Google Scholar]
  6. Keppler F, Hamilton JTG, Brass M, Röckmann T (2006) Methane Emissions from Terrestrial Plants Under Aerobic Conditions. Nature 439: 187-191. [CrossRef] [Google Scholar]
  7. Megonigal JP, Guenther AB (2008) Methane Emissions from Upland Forest Soils and Vegitation. Tree Physiology 28: 491-498. [CrossRef] [Google Scholar]
  8. Zhang W, Wang K, Luo Y, Fang Y, Yan J, et al. (2014) Methane Uptake in Forest Soils along an Urban-to-Rural Gradient in Pearl River Delta, South China. Sci Rep 4: 5120. [CrossRef] [Google Scholar] [PubMed]
  9. Sinha V, Williams J, Crutzen PJ, Lelieveld J (2007) Methane Emissions from Boreal and Tropical Forest Ecosystems Derived from In-Situ Measurements. Atmos Chem Phys Discuss 7: 14011-14039. [CrossRef] [Google Scholar]
  10. Hu T, Sun L, Hu H, Guo F (2017) Effects of Fire Disturbance on Soil Respiration in the Non Growing Season in a Larix Gmelinii Forest in the Daxingan Mountains, China. PLoS One 12: e0180214. [CrossRef] [Google Scholar] [PubMed]
  11. Kim Y, Tanaka N (2003) Effect of Forest Fires on the Fluxes of CO2, CH4, and NO2 in Borael Forest Soils, Interior Alaska. J Geophysical Res 108: 8154. [CrossRef] [Google Scholar]
  12. Zhao Y, Wang YZ, Xu ZH, Fu L (2015) Impacts of Prescribed Burning on Soil Greenhouse Gas Fluxes in a Suburban Native Forest of Southeastern Queensland, Australia. Biogeosciences 12: 6279-6290. [CrossRef] [Google Scholar]
  13. Londo AJ, Messina MG, Schoenholtz SH (1999) Forest Harvesting Effects on Soil Temperature, Moisture, and Respiration in a Bottomland Hardwood Forest. Soil Society of America Journal 63: 637-644. [CrossRef] [Google Scholar]
  14. Parkin TB, Kaspar TC (2003) Temperature Controls on Diurnal Carbon Dioxide Flux. Soil Science Society of America Journal 67: 1763-1772. [CrossRef] [Google Scholar]
  15. Berg B, Matzner E (1997) Effect of N Deposition on Decomposition of Plant Litter and Soil Organic Matter in Forest Systems. Env Reviews 5: 1-25. [CrossRef] [Google Scholar]
  16. Janssens IA, Dielaman W, Luyssaert S, Subke JA, Reichstein M, et al. (2010) Reduction in Forest Soil Respiration in Response to Nitrogen Depletion. Nature Geoscience. 3: 315-322. [CrossRef] [Google Scholar]
  17. Davidson EA, Belk E, Boone RD (1998) Soil Water Content and Temperature as Independent or Confounded Factors Controlling the Soil Respiration in a Temperate Mixed Hardwood Forest. Global Change Biology 4: 217-277. [CrossRef] [Google Scholar]
  18. Tang J, Qi Y, Xu M, Misson L, Goldstein AH, et al. (2005) Forest Thinning and Soil Respiration in a Ponderosa Pine Plantation in the Sierra Nevada. Tree Physiol 25: 57-66. [CrossRef] [Google Scholar] [PubMed]
  19. Xu M, Qi Y (2001) Soil Surface CO2 Efflux and its Spatial and Temporal Variations in a Young Ponderosa Pine Plantation in Northern California. Global Change Biol 7: 667-677. [CrossRef] [Google Scholar]
  20. Porter TL, Dillingham TR (2018) In-Situ Measurement of Forrest Soil Gases using Quadrupole Mass Spectrometry. International Journal of Earth and Environmental Sciences 3: 149-155. [CrossRef] [Google Scholar]
  21. Porter T L, Dillingham TR (2020) Measurement of Carbon Dioxide and Methane in Forest Soils Following Uncontrolled Wildfires in the Coconino National Forest. International Journal of Earth and Environmental Sciences 5: 176-184.
  22. Rui Y, Murphy DV, Wang X, Hoyle FC (2016) Microbial Respiration, but not Biomass, Responded Linearly to Increasing Light Fraction Organic Matter Input: Consequences for Carbon Sequestration. Scientific Reports 5: 1-9. [CrossRef] [Google Scholar]
  23. Covey K, Megonigal JP (2019) Methane Production and Emissions in Trees and Forests. New Phytologist 222: 35-51. [CrossRef] [Google Scholar]
  24. Anderson BL, Bidoglio G, Leip A, Rembges D (1998) A New Method to Study Simultaneous Methane Oxidation and Methane Production in Soils. Global Biogeochem. Cycles 12: 587-594. [CrossRef] [Google Scholar]
  25. Sullivan BW, Kolb TE, Hart SC, Kaye JP, Hungate BA, et al. (2011) Wildfire Reduces Carbon Dioxide Efflux and Increases Methane Uptake in Ponderosa Pine Forest Soils of the Southwestern USA. Biogeochemistry 104: 251-265. [CrossRef] [Google Scholar]
  26. McGenity TJ, Crombie AT, Murrell JC (2018) Microbial Cycling of Isoprene, the Most Abundantly Produced Biological Volatile Compound on Earth. The Multidisciplinary Journal of Microbial Ecology 12: 931-941. [CrossRef] [Google Scholar]
  27. Porter TL, Dillingham TR, Cornelison DM (2009) Design of a Portable, Battery Powered Quadruple Mass Spectrometer System for Real-Time Sampling of Materials. Proc Mat Res Soc 1169: 1169-Q06-10. [CrossRef] [Google Scholar]