Profile
International Journal of Earth & Environmental Sciences Volume 7 (2022), Article ID 7:IJEES-192, 14 pages
https://doi.org/10.15344/2456-351X/2022/192
Original Article
Special Issue: Sedimentary Environments and Facies
Geochemical Characteristics of Different Salinized Lacustrine Shales and the Evaluation of Shale Oil Potential: A Case from Bohai Bay Basin

Di Chen*, Fujie Jiang*, Min Li, Zhi Xu, Yuanyuan Chen, Yang Liu and Lina Huo

State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
Dr. Fujie Jiang, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China; E-mail: jfjhtb@163.com@163.com
Dr. Di Chen, State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China; E-mail: cd18801323769@163.com
15 December 2021; 15 January 2022; 17 January 2022
Chen D, Jiang F, Li M, Xu Z, Chen Y, et al. (2022) Geochemical Characteristics of Different Salinized Lacustrine Shales and the Evaluation of Shale Oil Potential: A Case from Bohai Bay Basin. Int J Earth Environ Sci 7: 192 doi: https://doi.org/10.15344/2456-351X/2022/192
This work was funded by the General program of National Natural Science Foundation of China (41872128), National Natural Science Foundation of China (Grant number 42102145), Science Foundation of China University of Petroleum, Beijing (Grant number 2462020BJRC005) and the AAPG Foundation Grants-in-Aid program (14545976 and 13231).

References

  1. Zhang J, Lin L, Li Y, Tang X, Zhu L, et al. (2012) Classification and evaluation of shale oil. Earth Sci Front 19: 322-331.
  2. Er C, Zhao J, Bai Y, Fan H, Shen W, et al. (2013) Reservoir characteristics of the organic- rich shales of the Triassic Yanchang formation in Ordos basin. Oil Gas Geol 34: 709-716.
  3. Luo R, Zha M, He H, Gao C, Qu J, et al. (2016) Characteristics of pore structures in Paleogene shales in Nanpu Sag. Journal of China University of Petroleum 40: 23-33.
  4. Lewan MD, Ruble TE (2002) Comparison of petroleum generation kinetics by isothermal hydrous and nonisothermal open-system pyrolysis. Org Geochem 33: 1457-1475. [CrossRef] [Google Scholar]
  5. Manzi V, Roveri M, Gennari R, Bertini A, Biffi U, et al. (2007) The deepwater counterpart of the messinian lower evaporites in the apennine foredeep: the Fanantello section (Northern apennines, Italy). Palaeogeogr Palaeoclimatol Palaeoecol 251: 470-499. [CrossRef] [Google Scholar]
  6. Jin Q, Zhu G, Wang J (2008) Deposition and distribution of high- potential source rocks in saline lacustrine environments. J Chin Univ Petrol 32: 19-23. [Google Scholar]
  7. Grosjean E, Love GD, Stalvies C, Fike DA, Summons RE, et al. (2009) Origin of petroleum in the Neoproterozoice Cambrian south Oman salt Basin. Org Geochem 40: 87-110. [CrossRef] [Google Scholar]
  8. Cai X (2012) Hydrocarbon generation-expulsion mechanisms and efficiencies of lacustrine source rocks: a case study from the Dongying sag, Bohai Bay basin. Oil Gas Geol 33: 329-334. [Google Scholar]
  9. Li R (1993) Study on organic matter and oil generation of sedimentary rocks in evaporative salt environment. Beijing: Ocean Press.
  10. Peters KE, Cunningham AE, Walters CC, Jiang J, Fan Z, et al. (1996) Petroleum systems in the Jiangling - Dangyang area, Jianghan Basin, China. Org Geochem 24: 1035-1060. [CrossRef] [Google Scholar]
  11. Schieber J, Zimmerle W (1998) The history and promise of shale research. Shales and Mudstones 1: 1-10. [Google Scholar]
  12. Katz B, Lin F (2014) Lacustrine basin unconventional resource plays: Key differences. Mar Pet Geol 56: 255-265. [CrossRef] [Google Scholar]
  13. Liu C, Jiang X (2018) Development report of oil and gas industry at China and abroad in 2018. Petroleum Industry Press: Beijing.
  14. Jia J (2012) Research on the Recognition and Resource Evaluation of the Upper Cretaceous Oil Shale Based On Geochemistry-Geophysics Technique in the Songliao Basin (NE, China). Doctoral Thesis, Jilin University.
  15. Sun PC, Sachsenhofer RF, Liu Z, Strobl SA, Meng Q, et al. (2013) Organicmatter accumulation in the oil shale-and coal-bearing Huadian Basin (Eocene; NE China). Int J Coal Geol 105: 1-15. [CrossRef] [Google Scholar]
  16. Pedersen TF, Calvert SE (1990) Anoxia vs. Productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks? AAPG Bull 74: 545-466. [CrossRef] [Google Scholar]
  17. Dean WE, Gardner JV, Piper DZ (1997) Inorganic geochemical indicators of glacial-interglacial changes in productivity and anoxia on the California continental margin. Geochim Cosmochim Acta 61: 4507-4518. [CrossRef] [Google Scholar]
  18. Boucsein B, Stein R (2000) Particulate organic matter in surface sediments of the Laptev Sea (Arctic Ocean): application of maceral analysis as organic-carbon-source indicator. Mar Geol 162: 573-586. [CrossRef] [Google Scholar]
  19. Stow DAV, Huc AY, Bertrand P (2001) Depositional processes of black shales in deep water. Mar Pet Geol 18: 491-498. [CrossRef] [Google Scholar]
  20. Zhang W, Yang H, Fu S, Zan C (2007) On the development mechanism of the lacustrine high-grade hydrocarbon source of Chang 91 member in Ordos Basin. Sci China Ser D Earth Sci 50: 39-46. [CrossRef] [Google Scholar]
  21. Hao F, Zhou X, Zhu Y, Yang Y (2011) Lacustrine source rock deposition in response to co-evolution of environments and organisms controlled by tectonic subsidence and climate, Bohai Bay Basin, China. Org Geochem 42: 323-339. [CrossRef] [Google Scholar]
  22. Li W, Zhang Z, Li Y, Liu C, Fu N, et al. (2013) The main controlling factors and developmental models of Oligocene source rocks in the Qiongdongnan Basin, northern South China Sea. Pet Sci 10: 161-170. [CrossRef] [Google Scholar]
  23. Jiang F, Chen D, Zhu C, Ning K, Ma L, et al. (2021) Mechanisms for the Anisotropic Enrichment of Organic Matter in Saline Lake Basin: A Case Study of the Early Eocene Dongpu Depression, Eastern China. Journal of Petroleum Science and Engineering 210: 110035. [CrossRef] [Google Scholar]
  24. Chen D, Pang X, Li L, Jiang F, Liu G, et al. (2021) Organic geochemical characteristics and shale oil potential of the middle Eocene early-mature shale in the Nanpu Sag, Bohai Bay Basin, Eastern China. Marine and Petroleum Geology 133: 105248. [CrossRef] [Google Scholar]
  25. Chen S, Xu S, Wang D, Tan Y (2013) Effect of block rotation on fault sealing: An example in Dongpu sag, Bohai Bay basin, China. Mar Pet Geol 39: 39-47. [CrossRef] [Google Scholar]
  26. Lyu X, Jiang Y, Liu J (2016) Phase types identification and genetic analysis for Paleogene condensate gas pools in the Dongpu depression. J China Univ Miner Technol 45: 1148-1155. [Google Scholar]
  27. Jiang F, Pang X, Bai J, Xinhuai Z, Jianping L, et al. (2016) Comprehensive assessment of source rocks in the Bohai Sea area, eastern China. AAPG Bulletin 100: 969-1002. [CrossRef] [Google Scholar]
  28. Lu R, Zhao C, Chen S (1993) Petroleum Geology of China. Petroleum Industry Press, Beijing.
  29. Hou G, Qian X, Cai D (2001) The tectonic evolution of Bohai basin in Mesozoic and Cenozoic time. Acta Sci Nat Univ Pekin 37: 845-851.
  30. Su H, Qu L, Zhang J, Wang P, He F, et al. (2006) Tectonic evolution and extensional pattern of rifted basin, a case study of Dongpu depression. Oil Gas Geol 27: 70-71. [CrossRef] [Google Scholar]
  31. Jiang Y, Chang Z, Lu X, Wu X (2008) Genetic types and distribution of paleogene condensate gas pools in Dongpu depression. J China Univ Petrol 32: 28-34. [CrossRef] [Google Scholar]
  32. Zhu WL, Wang GC, Zhou Y (2000) Potential of petroleum resources in the offshore of Bohai Bay Basin. Acta Petrolei Sinica 21: 1-7. [Google Scholar]
  33. Zhu WL, Ge JD (2001) Gas exploration potential in offshore Bohai Bay Basin. Acta Petrolei Sinica 22: 8-13. [Google Scholar]
  34. Zuo YH, Qiu NS, Li CC, Li JP, Guo YH, et al. (2011) Geothermal regime and hydrocarbon kitchen evolution of the offshore Bohai Bay Basin, North China. AAPG Bulletin 95: 749-769. [CrossRef] [Google Scholar]
  35. Zheng T, Zhao L, Chen L (2005) A detailed receiver function image of the sedimentary structure in the bohai bay basin. Phys Earth Planet Int 152: 129-143. [CrossRef] [Google Scholar]
  36. Qi J, Yang Q (2010) Cenozoic structural deformation and dynamic processes of the Bohai Bay Basin province, China. Mar Pet Geol 27: 757-771. [CrossRef] [Google Scholar]
  37. Wang M, Sherwood N, Li Z, Lu S, Wang W, et al. (2015) Shale oil occurring between salt intervals in the Dongpu Depression, Bohai Bay Basin, China. Int J Coal Geol 152: 100-112. [CrossRef] [Google Scholar]
  38. Tang L, Pang X, Xu T, Hu T, Pan Z, et al. (2017) Hydrocarbon generation thresholds of Paleogene Shahejie Fm source rocks and their north-south differences in the Dongpu Sag, Bohai Bay Basin. Natur Gas Ind 37: 26-37.
  39. Du H, Yu X, Chen F (2008) Sedimentary characteristics of saltrocks and their petroleum geologic significance of the member 3 of Shahejie formation of Paleogene in Dongpu depression, Henan Province. Journal of Palaeogeography 10: 53-62.
  40. Chen J, Lu K, Feng Y, Yuan K, Wang D, et al. (2012) Evaluation on hydrocarbon source rocks in different environments and characteristics of hydrocarbon generation and expulsion in Dongpu Depression. Fault-Block Oil & Gas Field 19: 35-38.
  41. Peters K, Walters C, Moldowan J (2005) The Biomarker guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History. University Press: Cambridge.
  42. Lu S, Huan W, Chen F, Li J, Wang M, et al. (2012) Classification and evaluation criteria of shale oil and gas resource: discussion and application. Pet Explor Dev 39: 249-255. [CrossRef] [Google Scholar]
  43. Jarvie DM (2012) Shale resource systems for oil and gas: Part 2-Shale-oil resource systems. AAPG Memoir. [CrossRef] [Google Scholar]
  44. He J, Ding W, Jiang Z, Li A, Wang R, et al. (2016) Logging identification and characteristic analysis of the lacustrine organic-rich shale lithofacies: A case study from the Es3L shale in the Jiyang Depression, Bohai Bay Basin, Eastern China. J Petrol Sci Eng 145: 238-255. [CrossRef] [Google Scholar]
  45. Peters K, Cassa M (1994) Applied source rock geochemistry. AAPG Memoir.
  46. Zou Y, Sun J, Li Z, Xu X, Li M, et al. (2018) Evaluating shale oil in the Dongying Depression, Bohai Bay Basin, China, using the oversaturation zone method. J Petrol Sci Eng 161: 291-301. [CrossRef] [Google Scholar]
  47. Varma A, Mishra D, Samad S, Prasad A, Panigrahi D, et al. (2018) Geochemical and organo-petrographic characterization for hydrocarbon generation from Barakar Formation in Auranga Basin, India. Int J Coal Geol 186: 97-114. [CrossRef] [Google Scholar]
  48. Behar F, Lewan M, Lorant F, Vandenbroucke M (2003) Comparison of artificial maturation of lignite in hydrous and nonhydrous conditions. Org Geochem 34: 575-600. [CrossRef] [Google Scholar]
  49. Li M, Chen Z, Cao T, Ma X, Liu X, et al. (2018) Expelled oils and their impacts on Rock-Eval data interpretation, Eocene Qianjiang Formation in Jianghan Basin, China. Int J Coal Geol 191: 37-48. [CrossRef] [Google Scholar]
  50. Xu H (2001) Testing Technology and Application of Petroleum Geological Experiments. Petroleum Industry Press: Beijing.
  51. ICCP (1998) The new vitrinite classification. Fuel 77: 349-358.
  52. Hutton A (1994) Chemical and petrographic classification of kerogen/macerals. Energy & Fuel 8: 1478-1488. [CrossRef] [Google Scholar]
  53. Littke R, Klussmann B, Krooss B, Leythaeuser D (1991) Quantification of loss of calcite, pyrite, and organic matter due to weathering of Toarcoan black shales and effects on kerogen and bitumen characteristics. Geochim Cosmochim Ac 55: 3369-3378. [CrossRef] [Google Scholar]
  54. Scott A (2002) Coal petrology and the origin of coal macerals: a way ahead? Int J Coal Geol 50: 119-134. [CrossRef] [Google Scholar]
  55. Bandopadhyay AK, Mohanty D (2014) Variation in hydrogen content of vitrinite concentrates with rank advance. Fuel 134: 220-225. [CrossRef] [Google Scholar]
  56. Wang P, Chen Z, Pang X, Hu K, Sun M, et al. (2016) Revised models for determining TOC in shale play: Example from Devonian Duvernay shale, Western Canada sedimentary basin. Mar Pet Geol 70: 304-319. [CrossRef] [Google Scholar]
  57. Jarvie D, Claxton B, Henk F, Breyer J (2001) Oil and Shale Gas from the Barnett Shale, Ft. Worth Basin, Texas. Talk presented at the AAPG National Convention. Denver, CO. AAPG Bull.
  58. Moldowan J, Seifert W, Gallegos E (1985) Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bull 69: 1255-1268. [CrossRef] [Google Scholar]
  59. Xu J, Bechtel A, Sachsenhofer R, Liu Z, Gratzer R, et al. (2015) High resolution geochemical analysis of organic matter accumulation in the Qingshankou Formation, Upper Cretaceous, Songliao Basin (NE China). Int J Coal Geol 141: 23-32. [CrossRef] [Google Scholar]
  60. Volkman J (1986) A review of sterol markers for marine and terrigenous organic matter. Org Geochem 9: 83-99. [CrossRef] [Google Scholar]
  61. Grantham P, Wakefield L (1988) Variations in the sterane carbon number distributions of marine source rock derived crude oils through geological time. Org Geochem 12: 61-73. [CrossRef] [Google Scholar]
  62. Palmer S (1984) Hydrocarbon Source Potential of Organic Facies of Lacustrine Elko Formation (Eocene-Oligocene), Northeastern Nevada. AAPG Bull 68: 945-945. [Google Scholar]
  63. Hunt J (1996) Petroleum geology and geochemistry, Freeman, New York.
  64. Volkman J, Alexander R, Kagi R, Noble R, Woodhouse C, et al. (1983) A geochemical reconstruction of oil generation in the Barrow Sub-basin of Western Australia. Geochim Cosmochim Ac 47: 2091-2105. [CrossRef] [Google Scholar]
  65. Riboulleau A, Schnyder J, Riquier L, Lefebvre V, Baudin F, et al. (2007) Environmental change during the Early Cretaceous in the Purbeck-type Durlston Bay section (Dorset, Southern England): a biomarker approach. Org Geochem 38: 1804-1823. [CrossRef] [Google Scholar]
  66. Shekarifard A, Daryabandeh M, Rashidi M, Hajian M, Röth J, et al. (2019) Petroleum geochemical properties of the oil shales from the Early Cretaceous Garau Formation, Qalikuh locality, Zagros Mountains, Iran. Int J Coal Geol 206: 1-18. [CrossRef] [Google Scholar]
  67. Luo G, Yang H, Algeo T, Hallmann C, Xie S, et al. (2019) Lipid biomarkers for the reconstruction of deep-time environmental conditions. Earth-Sci Rev 189: 99-124. [CrossRef] [Google Scholar]
  68. Bechtel A, Jia J, Strobl S, Sachsenhofer R, Liu Z, et al. (2012) Palaeoenvironmental conditions during deposition of the Upper Cretaceous oil shale sequences in the Songliao Basin (NE China): Implications from geochemical analysis. Org Geochem 46: 76-95. [CrossRef] [Google Scholar]
  69. Brooks JD, Gould K, Smith JW (1969) Isoprenoid hydrocarbons in coal and petroleum. Nature 222: 90. [CrossRef] [Google Scholar]
  70. Powell TG, Mckirdy DM (1973) Relationship between ratio of pristine to phytane, crude oil composition and geological environment in Australia. Phys Sci 243: 37-39. [CrossRef] [Google Scholar]
  71. Taylor SR, McLennan SM (1985) The Continental Crust: its Composition and Evolution. Blackwell, Oxford. [Google Scholar]
  72. Perri F, Ohta T (2014) Paleoclimatic conditions and paleoweathering processes on Mesozoic continental redbeds from Western-Central Mediterranean Alpine Chains. Palaeogeography Palaeoclimatology Palaeoecology 395: 144-157. [CrossRef] [Google Scholar]
  73. Khudoley AK, Rainbird RH, Stern RA, Kropachev AP, Heaman LM, et al. (2001) Sedimentary evolution of the Riphean-Vendian basin of southwestern Siberia. Precambrian Research 111: 129-163. [CrossRef] [Google Scholar]
  74. Ohta T (2004) Geochemistry of Jurassic to earliest Cretaceous deposits in the Nagato Baisn, SW Japan: implication of factor analysis to sorting effects and provenance signatures. Sedimentary Geology 171: 159-180. [CrossRef] [Google Scholar]
  75. Panahi A, Young GM, Rainbird RH (2000) Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Quebec, Canada. Geochimica et Cosmochimica Acta 64: 2199-2220. [CrossRef] [Google Scholar]
  76. Young GM, Nesbitt HW (1998) Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. Journal of Sedimentary research 68: 448-455. [CrossRef] [Google Scholar]
  77. Nesbitt HW, Young GM, McLennan SM, Keays RR (1996) Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies. The Journal of Geology 104: 525-542. [CrossRef] [Google Scholar]
  78. Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299: 715. [CrossRef] [Google Scholar]
  79. McLennan SM (1993) Weathering and global denudation. The Journal of Geology 101: 295-303. [CrossRef] [Google Scholar]
  80. Bock B, McLennan SM, Hanson GN (1998) Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian orogeny in New England. Sedimentology 45: 635-655. [CrossRef] [Google Scholar]
  81. Fedo CM, Nesbitt HW, Young GM (1995) Unraveling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23: 921-924. [CrossRef] [Google Scholar]
  82. Fedo CM, Eriksson KA, Krogstad EJ (1996) Geochemistry of shales from the Archean (~3.0 Ga) Buhwa Greenstone Belt, Zimbabwe: implications for provenance and source area weathering. Geochimica et Cosmochimica Acta 60: 1751-1763. [CrossRef] [Google Scholar]
  83. Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic considerations. Geochimica et Cosmochimica Acta 48: 1523-1534. [CrossRef] [Google Scholar]
  84. Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. The Journal of Geology 97: 129-147. [CrossRef] [Google Scholar]
  85. Újvári G, Varga A, Raucsik B, Kovács J (2014) The Paks loess-paleosol sequence: a record of chemical weathering and provenance for the last 800 ka in the mid-Carpathian Basin. Quaternary International 319: 22-37. [CrossRef] [Google Scholar]
  86. Ohta T, Arai H (2007) Statistical empirical index of chemical weathering in igneous rocks: A new tool for evaluating the degree of weathering. Chemical geology 240: 280-297. [CrossRef] [Google Scholar]
  87. Ohta T, Li G, Hirano H, Sakai T, Kozai T, et al. (2011) Early Cretaceous terrestrial weathering in Northern China: relationship between paleoclimate change and the phased evolution of the Jehol Biota. The Journal of Geology 119: 81-96. [CrossRef] [Google Scholar]
  88. Muhs DR, Bettis EA, Been J, McGeehin JP (2001) Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi river valley. Soil Science Society of America Journal 65: 1761-1777. [CrossRef] [Google Scholar]
  89. Sheldon ND, Retallack GJ, Tanaka S (2002) Geochemical climofunctions from North American soils and application to paleosols across the Eocene-Oligocene boundary in Oregon. The Journal of Geology 110: 687-696. [CrossRef] [Google Scholar]
  90. Passchier S, Bohaty SM, Jiménez-Espejo F, Pross J, Röhl U, et al. (2013) Early Eocene to middle Miocene cooling and aridification of East Antarctica. Geochemistry, Geophysics, Geosystems 14: 1399-1410. [CrossRef] [Google Scholar]
  91. Passchier S, Ciarletta DJ, Miriagos TE, Bijl PK, Bohaty SM, et al. (2017) An Antarctic stratigraphic record of stepwise ice growth through the Eocene-Oligocene transition. GSA Bulletin 129: 318-330. [CrossRef] [Google Scholar]
  92. Maynard JB (1992) Chemistry of modern soils as a guide to interpreting Precambrian paleosols. The Journal of Geology 100: 279-289. [CrossRef] [Google Scholar]
  93. Armstrong-Altrin JS, Verma SP (2005) Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sedimentary Geology 177: 115-129. [CrossRef] [Google Scholar]
  94. Armstrong-Altrin JS, Nagarajan R, Madhavaraju J, Rosalez-Hoz L (2013) Geochemistry of the Jurassic and Upper Cretaceous shales from the Molango Region, Hidalgo, eastern Mexico: Implications for source-area weathering, provenance, and tectonic setting. Comptes Rendus Geoscience 345: 185-202. [CrossRef] [Google Scholar]
  95. Awasthi N (2017) Provenance and paleo-weathering of Tertiary accretionary prism-forearc sedimentary deposits of the Andaman Archipelago, India. Journal of Asian Earth Sciences 150: 45-62. [CrossRef] [Google Scholar]
  96. Roser BP, Korsch RJ (1988) Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chemical geology 67: 119-139. [CrossRef] [Google Scholar]
  97. Hayashi KI, Fujisawa H, Holland HD, Ohmoto H (1997) Geochemistry of ~1.9 Ga sedimentary rocks from Northeastern Labrador, Canada. Geochimica et Cosmochimica Acta 61: 4115-4137. [CrossRef] [Google Scholar]
  98. Roser BP, Cooper RA, Nathan S, Tulloch AJ (1996) Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terranes of the West Coast and Nelson, New Zealand. New Zealand Journal of Geology and Geophysics 39: 1-16. [CrossRef] [Google Scholar]
  99. Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. The Journal of Geology 91: 611-627. [CrossRef] [Google Scholar]
  100. Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology 94: 635-650. [CrossRef] [Google Scholar]
  101. Herron MM (1988) Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research 58: 820-829. [CrossRef] [Google Scholar]