Profile
International Journal of Earth & Environmental Sciences Volume 6 (2021), Article ID 6:IJEES-188, 11 pages
https://doi.org/10.15344/2456-351X/2021/188
Review Article
How Biomining has been Used to Recover Metals from Ores and Waste? A Review

Igor Yannick das Neves Vasconcellos Brandão1, Atílio Akihiro Munakata1, Luís Antonio Lourenço2, and Danielle Maass1,*

1Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280 São José dos Campos, SP, Brazil
2Latin American Institute of Technology, Infrastructure and Territory (ILATIT), Federal University of Latin American Integration (UNILA), 85867- 970 Foz do Iguaçu, PR, Brazil
Prof. Danielle Maass, Institute of Science and Technology (ICT), Federal University of São Paulo (UNIFESP), 12231-280 São José dos Campos, SP, Brazil; E-mail: danielle.maass@unifesp.br
23 October 2021; 16 November 2021; 18 November 2021
Brandão IYNV, Munakata AA, Lourenço LA, Maass D (2021) How Biomining has been Used to Recover Metals from Ores and Waste? A Review. Int J Earth Environ Sci 6: 188. doi: https://doi.org/10.15344/2456-351X/2021/188

References

  1. Anjum F, Shahid M, Akcil A (2012) Biohydrometallurgy techniques of low grade ores: A review on black shale. Hydrometallurgy 118: 1-12. [CrossRef] [Google Scholar]
  2. Vieira EA (2011) A (in) sustentabilidade da indústria da mineração no Brasil. Estação Científica 1: 1-15. [Google Scholar]
  3. Zammit CM, Mutch LA, Watling HR, WatkinEJ (2011) The recovery of nucleic acid from biomining and acid mine drainage microorganisms. Hydrometallurgy 108: 87-92. [CrossRef] [Google Scholar]
  4. Mulligan DR, Franks DM, Boger DV, Claire MC, Côte CM, et al. (2011) Sustainable development principles for the disposal of mining and mineral processing wastes. Resour Policy 36: 114-122. [CrossRef] [Google Scholar]
  5. Johnson DB (2014) Biomining-biotechnologies for extracting and recovering metals from ores and waste materials. Curr Opin Biotechnol 30: 24-31. [CrossRef] [Google Scholar] [PubMed]
  6. Kim MJ, Seo JY, Choi YS, Kim GH (2016) Bioleaching of spent Zn-Mn or Ni-Cd batteries by Aspergillus species. Waste Manag 51: 168-173. [CrossRef] [Google Scholar] [PubMed]
  7. Xie F, Cai T, Ma Y, Li H, Li C, et al (2009) Recovery of Cu and Fe from Printed Circuit Board waste sludge by ultrasound: Evaluation of industrial application. J Clean Prod 17: 1494-1498. [CrossRef] [Google Scholar]
  8. da Silveira TA, dos Santos EA, Colling AV, Moraes CM, Brehm FA, et al. (2020) E-waste Management and the Conservation of Geochemical Scarce Resources. E-waste Recycling and Management, Springer, USA. [CrossRef] [Google Scholar]
  9. Kreusch MA, Ponte MS, Ponte HA, Kaminari NS, Marino CB, et al. (2007) Technological improvements in automotive battery recycling. Resour Conserv Recycl 52: 368-380. [CrossRef] [Google Scholar]
  10. Erüst C, Akcil A, Gahan CS, Tuncuk A, Deveci H, et al. (2013) Biohydrometallurgy of secondary metal resources: a potential alternative approach for metal recovery. J Chem Technol Biotechnol 88: 2115-2132. [CrossRef] [Google Scholar]
  11. Campodonico M, Vaisman D, Castro J, Razmilic V, Mercado F, et al. (2016) Acidithiobacillus ferrooxidans’s comprehensive model driven analysis of the electron transfer metabolism and synthetic strain design for biomining applications. Metab Eng Commun 3: 84-96. [CrossRef] [Google Scholar]
  12. MahmoudA, Cézac P, Hoadley A, Contamine F, D’Hugues P, et al. (2017) A review of sulfide minerals microbially assisted leaching in stirred tank reactors. Int Biodeterior Biodegrad 119: 118-146. [CrossRef] [Google Scholar]
  13. Brierley CL, Brierley JA (2013) Progress in bioleaching: Part B: Applications of microbial processes by the minerals industries. Appl Microbiol Biotechnol 97: 7543-7552. [CrossRef] [Google Scholar] [PubMed]
  14. Johnson DB (2013) Development and application of biotechnologies in the metal mining industry. Environ Sci Pollut Res Int 20: 7768-7776. [CrossRef] [Google Scholar] [PubMed]
  15. Colmer AR, Hinkle ME (1947) The Role of Microorganisms in Acid Mine Drainage: A Preliminary Report. Science 106: 253-256. [CrossRef] [Google Scholar] [PubMed]
  16. Zhao H, Zhang Y, Zhang X, Qian L, Sun M, et al. (2019) The dissolution and passivation mechanism of chalcopyrite in bioleaching: An overview. Miner Eng 136: 140-154. [CrossRef] [Google Scholar]
  17. Natarajan KA (2018) Bioleaching Mechanisms. In: Biotechnology of Metals; Elsevier, Índia.
  18. Bharadwaj A, Ting Y (2011) From biomining of mineral and ores to bio-urban mining of Industrial waste. Proceedings of Environment Teachnology and Management Conference. [Google Scholar]
  19. Jain N, Sharma D (2004) Biohydrometallurgy for Nonsulfidic Minerals-A Review. Geomicrobiol J 21: 135-144. [CrossRef] [Google Scholar]
  20. Clark ME, Batty JD, van Buuren CB, Dew DW, Eamon MA, et al. (2006) Biotechnology in minerals processing: Technological breakthroughs creating value. Hydrometallurgy 83: 3-9. [CrossRef] [Google Scholar]
  21. Watling H (2014) Review of biohydrometallurgical metals extraction from polymetallic mineral resources. Minerals 5: 1-60. [CrossRef] [Google Scholar]
  22. Anand P, Modak JM, Natarajan KA (1996) Biobeneficiation of bauxite using Bacillus polymyxa: calcium and iron removal. Int J Miner Process 48: 51-60. [CrossRef] [Google Scholar]
  23. Jerez C (2017) Metal Extraction and Biomining. Reference Module in Life Sciences, Elsevier, Netherlands.
  24. Işıldar A, van Hullebusch ED, Lenz M, Du Laing G, Marra A, et al. (2017) Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) - A review. J Hazard Mater 362: 467-481. [CrossRef] [Google Scholar]
  25. Marra A, Cesaro A, Rene ER, Belgiorno V, Lens PL, et al. (2018) Bioleaching of metals from WEEE shredding dust. J Environ Manage 210: 180-190. [CrossRef] [Google Scholar]
  26. Kutschke S, Guézennec AG, Hedrich S, Schippers A, Borg G, et al.(2015) Bioleaching of Kupferschiefer blackshale - A review including perspectives of the Ecometals project. Miner Eng 75: 116-125. [CrossRef] [Google Scholar]
  27. Rocchetti L, Amato A, Beolchini F (2018) Printed circuit board recycling: A patent review. J Clean Prod 178: 814-832. [CrossRef] [Google Scholar]
  28. Johnson DB (2006) Biohydrometallurgy and the environment: Intimate and important interplay. Hydrometallurgy 83: 153-166. [CrossRef] [Google Scholar]
  29. Brierley CL (2008) How will biomining be applied in future? Trans Nonferrous Met Soc China 18: 1302-1310. [CrossRef] [Google Scholar]
  30. Gentina JC, Acevedo F (2013) Application of bioleaching to copper mining in Chile. Electron J Biotechnol 16: 16-16. [CrossRef] [Google Scholar]
  31. Hoque ME, Philip OJ (2011) Biotechnological recovery of heavy metals from secondary sources-An overview. Mater Sci Eng 31: 57-66. [CrossRef] [Google Scholar]
  32. Cheru, MS (2021) Bio Hydrometallurgical Technology, Application and Process Enhancement. Heavy Metals - Their Environmental Impacts and Mitigation, IntechOpen. [CrossRef] [Google Scholar]
  33. Natarajan KA (2018) Methods in Biohydrometallurgy and Developments. Biotechnol Met 1: 81-106.
  34. Banerjee I, Burrell B, Reed C, West AC, Banta S, et al. (2017) Metals and minerals as a biotechnology feedstock: engineering biomining microbiology for bioenergy applications. Curr Opin Biotechnol 45: 144-155. [CrossRef] [Google Scholar] [PubMed]
  35. Watling HR (2006) The bioleaching of sulphide minerals with emphasis on copper sulphides - A review. Hydrometallurgy 84: 81-108. [CrossRef] [Google Scholar]
  36. Watling HR, Shiers DW, Collinson DM (2015) Extremophiles in Mineral Sulphide Heaps: Some Bacterial Responses to Variable Temperature, Acidity and Solution Composition. Microorganisms 3: 364-390. [CrossRef] [Google Scholar] [PubMed]
  37. Thenepalli T, Chilakala R, Habte L, Tuan LQ, Kim CS, et al. (2019) A brief note on the heap leaching technologies for the recovery of valuable metals. Sustain 11: 1-10. [CrossRef] [Google Scholar]
  38. Shiers DW, Collinson DM, Watling HR (2016) Life in heaps: a review of microbial responses to variable acidity in sulfide mineral bioleaching heaps for metal extraction. Res Microbiol 167: 576-586. [CrossRef] [Google Scholar] [PubMed]
  39. Faramarzi MA, Mogharabi-Manzari M, Brandl H (2020) Bioleaching of metals from wastes and low-grade sources by HCN-forming microorganisms. Hydrometallurgy 191: 105228. [CrossRef] [Google Scholar]
  40. Bosecker K (1987) Microbial recycling of mineral waste products. Acta Biotechnol 7: 487-497. [CrossRef] [Google Scholar]
  41. Natarajan KA (2018) Microbiological Aspects of Leaching Microorganisms. Biotechnology of Metals; Elsevier, Índia.
  42. Gumulya Y, Boxall NJ, Khaleque HN, Santala V, Carlson RP, et al. (2018) In a quest for engineering acidophiles for biomining applications: Challenges and opportunities. Genes 9: 1-27. [CrossRef] [Google Scholar] [PubMed]
  43. Jerez C (2017) Bioleaching and Biomining for the Industrial Recovery of Metal. In: Reference Module in Life Sciences, Elsevier, Chile.
  44. Waksman SA, Joffe JS (1922) Microörganisms Concerned in the Oxidation of Sulfur in the Soil: II. Thiobacillus Thiooxidans, a New Sulfur-oxidizing Organism Isolated from the Soil. J Bacteriol 7: 239-256. [CrossRef] [Google Scholar] [PubMed]
  45. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20: 591-604. [CrossRef] [Google Scholar]
  46. Ghosh S, Mohanty S, Akcil A, Sukla LB, Das AP, et al. (2016) A greener approach for resource recycling: Manganese bioleaching. Chemosphere 154: 628-639. [CrossRef] [Google Scholar]
  47. Bosecker K (1997) Bioleaching: metal solubilization by microorganisms. FEMS Microbiol Rev 20: 591-604. [CrossRef] [Google Scholar]
  48. Nakazawa H, Fujisawa H, Sato H (1998) Effect of activated carbon on the bioleaching of chalcopyrite concentrate. Int J Miner Process 55: 87-94. [CrossRef] [Google Scholar]
  49. Veglio F, Beolchini F, Ubaldini S (1998) Empirical models for oxygen mass transfer: a comparison between shake flask and lab-scale fermentor and application to manganiferous ore bioleaching. Process Biochem 33: 367-376. [CrossRef] [Google Scholar]
  50. Boon M, Heijnen J (1998) Chemical oxidation kinetics of pyrite in bioleaching processes. Hydrometallurgy 48: 27-41. [CrossRef] [Google Scholar]
  51. Rawlings DE (2002) Heavy Metal Mining Using Microbes. Annu Rev Microbiol 56: 65-91. [CrossRef] [Google Scholar] [PubMed]
  52. Karavaĭko G, Krutsko V, Mel’nikova E, Avakian Z (1980) Role of microorganisms in the destruction of spodumene. Mikrobiologiia 49: 547–551. [Google Scholar]
  53. Castro I, Fietto JL, Vieira R, TrópiaMJ, Campos LM, et al. (2000) Bioleaching of zinc and nickel from silicates using Aspergillus niger cultures. Hydrometallurgy 57: 39-49. [CrossRef] [Google Scholar]
  54. Salinas E, Donati E, Rezza I, Salinas E, Elorza M, et al. (2001) Mechanisms involved in bioleaching of an aluminosilicate by heterotrophic microorganisms. Process Biochem 36: 495-500. [CrossRef] [Google Scholar]
  55. Panda S, Mishra S, Pradhan N, Mohaptra UB, Sukl LB, et al. (2014) Application of Some Eco-diversified Mineral Oxidizers and Reducers Towards Development of a Sustainable Biotechnological Industry. Curr Biochem Eng 1: 117-124. [CrossRef] [Google Scholar]
  56. Huynh D, Giebne F, Kaschabek SR, Rivera-Araya J, Levican G, et al. (2019) Effect of sodium chloride on Leptospirillum ferriphilum DSM 14647T and Sulfobacillus thermosulfidooxidans DSM 9293T: Growth, iron oxidation activity and bioleaching of sulfidic metal ores. Miner Eng 138: 52-59. [CrossRef] [Google Scholar]
  57. Schippers A, Hedrich S, VastersJ, Drobe M, Sand W, et al. (2014) Biomining: Metal Recovery from Ores with Microorganisms. Adv Biochem Eng Biotechnol 141: 1-47. [CrossRef] [Google Scholar] [PubMed]
  58. Jordan H, Sanhueza A, Gautier V, Escobar B, Vargas T, et al. (2006) Electrochemical study of the catalytic influence of Sulfolobus metallicus in the bioleaching of chalcopyrite at 70 °C. Hydrometallurgy 83: 55-62. [CrossRef] [Google Scholar]
  59. Vera M, Schippers A, Sand W (2013) Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation-part A. Appl Microbiol Biotechnol 97: 7529-7541. [CrossRef] [Google Scholar] [PubMed]
  60. Sand W, Gehrke T, Jozsa P, Schippers A (2001) (Bio)chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy 59: 159-175. [CrossRef] [Google Scholar]
  61. Brune KD, Bayer T (2012) Engineering microbial consortia to enhance biomining and bioremediation. Front Microbiol 3: 1-6. [CrossRef] [Google Scholar]
  62. Rohwerder MT (2003) Bioleaching review part A : Progress in bioleaching : fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl Microbiol Biotechnol 63: 239-248. [CrossRef] [Google Scholar] [PubMed]
  63. Gadd GM (2004) Microbial influence on metal mobility and application for bioremediation. Geoderma 122: 109-119. [CrossRef] [Google Scholar]
  64. Watling H (2014) Review of Biohydrometallurgical Metals Extraction from Polymetallic Mineral Resources. Minerals 5: 1-60. [CrossRef] [Google Scholar]
  65. Strasser H, Burgstaller W, Schinner F (1994) High-yield production of oxalic acid for metal leaching processes by Aspergillus niger. FEMS Microbiol Lett 119: 365-370. [CrossRef] [Google Scholar] [PubMed]
  66. Ehrlich HL (2001) Past, present and future of biohydrometallurgy. Hydrometallurgy 59: 127-134. [CrossRef] [Google Scholar]
  67. Gentina J, Acevedo F (2016) Copper Bioleaching in Chile. Minerals 6: 1-9. [CrossRef] [Google Scholar]
  68. Tao H, Dongwei L (2014) Presentation on mechanisms and applications of chalcopyrite and pyrite bioleaching in biohydrometallurgy - a presentation. Biotechnol Reports 4: 107-119. [CrossRef] [Google Scholar] [PubMed]
  69. Gericke M, Neale JW, van Staden PJ (2009) A Mintek perspective of the past 25 years in minerals bioleaching. J South African Inst Min Metall 109: 567-585. [Google Scholar]
  70. GieseE, Xavier L, Lins FA (2018) O Futuro da Reciclagem de Resíduos Eletrônicos. Bras Miner 385: 36-39.
  71. Potysz A, Pȩdziwiatr A, Hedwig S, Lenz M (2020) Bioleaching and toxicity of metallurgical wastes. J Environ Chem Eng 8: 1-10. [CrossRef] [Google Scholar]
  72. Beolchini F, Dell’Anno A, De Propris L, Ubaldini S, Cerrone F, et al. (2009) Auto- and heterotrophic acidophilic bacteria enhance the bioremediation efficiency of sediments contaminated by heavy metals. Chemosphere 74: 1321-1326. [CrossRef] [Google Scholar] [PubMed]
  73. Santhiya D, Ting Y (2006) Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst. J Biotechnol 121: 62-74. [CrossRef] [Google Scholar]
  74. Ishigaki T, Nakanishi A, Tateda M, Ike M, Fujita M, et al. (2005) Bioleaching of metal from municipal waste incinerationfly ash using a mixed culture of sulfur-oxidizing andiron-oxidizing bacteria. Chemosphere 60: 1087-1094. [CrossRef] [Google Scholar]
  75. Amato A, Beolchini F (2015) Urban Biomining: New Challenges for a Successful Exploitation of WEEE by Means of a Biotechnological Approach. Microbiology for Minerals, Metals, Materials and Environment, CRC Press, USA. [Google Scholar]
  76. Priya A, Hait S (2017) Comparative assessment of metallurgical recovery of metals from electronic waste with special emphasis on bioleaching. Env Sci Pollut Res 24: 6989-7008. [CrossRef] [Google Scholar] [PubMed]
  77. Oliveira CM, Machado CM, Duarte GW, Peterson M (2016) Beneficiation of pyrite from coal mining. J Clean Prod 139: 821-827. [CrossRef] [Google Scholar]
  78. Borma L, Soares P (2018) Drenagem ácida e gestão de resíduos sólidos de mineração. Extração de ouro: princípios, tecnologia e meio ambiente. CETEM/MCT: Rio de Janeiro.
  79. Becci A, Amato A, Fonti V, Karaj D, Beolchini F (2020) An innovative biotechnology for metal recovery from printed circuit boards. Resour Conserv Recycl 153: 1-29. [CrossRef] [Google Scholar]
  80. Islam A, Ahmed T, Awual M, Rahman A, Sultana M, et al. (2020) Advances in sustainable approaches to recover metals from e-waste-A review. J Clean Prod 244: 118815. [CrossRef] [Google Scholar]
  81. Işıldar A, van de Vossenberg J, Rene E, van Hullebusch E, Lens P, et al. (2016) Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB). Waste Manag 57: 149-157. [CrossRef] [Google Scholar]
  82. Rodrigues M, Leão V, Gomes O, Lambert F, Bastin D, et al. (2015) Copper extraction from coarsely ground printed circuit boards using moderate thermophilic bacteria in a rotating-drum reactor. Waste Manag 41: 148-158. [CrossRef] [Google Scholar] [PubMed]
  83. Chi TD, Lee JC, Pandey BD, Yoo K, Jeong J (2011) Bioleaching of gold and copper from waste mobile phone PCBs by using a cyanogenic bacterium. Miner Eng 24: 1219-1222. [CrossRef] [Google Scholar]
  84. Abbasi B, Harper J, Ahmadvand (2021) A short critique on biomining technology for critical materials. World J Microbiol Biotechnol 37: 1-6. [CrossRef] [Google Scholar] [PubMed]
  85. Kucuker M, Kuchta K (2018) Biomining-biotechnological systems for the extraction and recovery of metals from secondary sources. Glob NEST Print Greece 20: 737-742. [CrossRef] [Google Scholar]
  86. Gomes HI, Funari V, Mayes WM, Rogerson M, Prior TJ, et al. (2018) Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments. J Environ Manage 222: 30-36. [CrossRef] [Google Scholar]
  87. Garg H, Nagar N, Ellamparuthy G, Angadi SI, Gahan CS (2019) Bench scale microbial catalysed leaching of mobile phone PCBs with an increasing pulp density. Helyion 5: 1-11. [CrossRef] [Google Scholar]
  88. Das AP, Sukla LB, Pradhan N, Nayak S (2011) Manganese biomining: A review. Bioresour. Technol 102: 7381-7387. [CrossRef] [Google Scholar]
  89. Forti V, Baldé C, Kuehr R, Bel G (2020) The Global E-waste Monitor. Quantities, flows, and the circular economy potential. UNU/UNITAR SCYCLE, ITU.
  90. Murugesan MP, Kannan K, Selvaganapathy T (2020) Bioleaching recovery of copper from printed circuit boards and optimization of various parameters using response surface methodology (RSM). Mater Today Proc 26: 1-9. [CrossRef] [Google Scholar]
  91. Priya A, Hait S (2018) Extraction of metals from high grade waste printed circuit board by conventional and hybrid bioleaching using Acidithiobacillus ferrooxidans. Hydrometallurgy 177: 132-139. [CrossRef] [Google Scholar]
  92. Sodha AB, Tipre DR, Dave SR (2020) Optimisation of biohydrometallurgical batch reactor process for copper extraction and recovery from non-pulverized waste printed circuit boards. Hydrometallurgy 191: 1-9. [CrossRef] [Google Scholar]