Profile
International Journal of Earth & Environmental Sciences Volume 4 (2019), Article ID 4:IJEES-170, 6 pages
https://doi.org/10.15344/2456-351X/2019/170
Original Article
Regionally Significant Residential-heating Source of Organic Aerosols

Rong-Ming Hu*, Liz Coleman, C Noone, C Lin, Jurgita Ovadnevaite, and Colin O’Dowd*

School of Physics, Ryan Institute’s Centre for Climate & Air Pollution Studies, and Marine Renewable Energy Ireland, National University of Ireland, Galway, Ireland
Dr. Rong-Ming Hu, School of Physics, Ryan Institute’s Centre for Climate & Air Pollution Studies, and Marine Renewable Energy Ireland, National University of Ireland, Galway, Ireland; E-mail: rong-ming.hu@nuigalway.ie
Prof. Colin O’Dowd, School of Physics, Ryan Institute’s Centre for Climate & Air Pollution Studies, and Marine Renewable Energy Ireland, National University of Ireland, Galway, Ireland; E-mail: colin.odowd@nuigalway.ie
04 September 2019; 26 September 2019; 28 September 2019
Hu RM, Coleman L, Noone C, Lin C, Ovadnevaite J, et al. (2019) Regionally Significant Residential-heating Source of Organic Aerosols. Int J Earth Environ Sci 4: 170. doi: https://doi.org/10.15344/2456-351X/2019/170
This work is supported, by SFI MaREI funded project, Irish EPA AEROSOURCE project and Irish Centre for High-End Computing (ICHEC).

References

  1. O'Dowd CD, Facchini MC, Cavalli F, Ceburnis D, Mircea M, et al. (2004) Biogenically driven organic contribution to marine aerosol. Nature 431: 676-680. View
  2. O’Dowd CD, Ceburnis D, Ovadnevaite J, Bialek J, Stengel DB, et al. (2015) Connecting marine productivity to sea-spray via nanoscale biological processes, Phytoplankton Dance or Death Disco? Scientific Reports 5: 14883. View
  3. Tsigaridis K, Daskalakis N, Kanakidou M, Adams PJ, Artaxo P, et al. (2014) The AeroCom evaluation and intercomparison of organic aerosol in global models. Atmos Chem Phys 14: 10845-10895. View
  4. Liu L, Kong S, Zhang Y, Wang Y, Xu L, et al. (2017) Morphology, composition, and mixing state of primary particles from combustion sources-Crop residue, wood, and solid waste. Sci Rep 7: 5047. View
  5. Zhang Y, Yuan Q, Huang D, Kong S, Zhang J, et al. (2018) Direct observations of fine primary particles from residential coal burning: Insights into their morphology, composition, and hygroscopicity. Journal of Geophysical Research: Atmospheres 123: 12,964-12,979. View
  6. Lin C, Ceburnis D, Hellebust S, Buckley P, Wenger J, et al. (2017) Characterization of Primary Organic Aerosol from Domestic Wood, Peat, and Coal Burning in Ireland. Environ Sci Technol 51: 10624-10632. View
  7. Lin C, Huang RJ, Ceburnis D, Buckley P, Preissler J, et al. (2018) Extreme air pollution from residential solid fuel burning. Nature Sustainability 1: 512- 517. View
  8. Hu RM, Martin RV, Fairlie TD (2007) Global Retrieval of Columnar Aerosol Single Scattering Albedo from Space-based Observations. J Geophys Res 112: D02204. View
  9. Hu RM, Sokhi RS, Fisher BEA (2009) New algorithms and their application for satellite remote sensing of surface PM2.5 and aerosol absorption. Journal of Aerosol Science 40: 394-402. View
  10. Galmarini S, Koffi B, Solazzo E, Keating T, Hogrefe C, et al. (2017) Technical note: Coordination and harmonization of the multi-scale, multi-model activities HTAP2, AQMEII3, and MICS-Asia3: simulations, emission inventories, boundary conditions, and model output formats. Atmos Chem Phys 17: 1543-1555. View
  11. Appel KW, Chemel C, Roselle SJ, Francis XV, Hu RM, et al. (2012) Examination of the Community Multiscale Air Quality (CMAQ) model performance over the North American and European domains. Atmos Environ 53: 142-155. View
  12. Schere K, Flemming J, Vautard R, Chemel C, Colette A, et al. (2012) Trace gas/aerosol boundary concentrations and their impacts on continentalscale AQMEII modeling domains. Atmos Environ 53: 38-50. View
  13. Baklanov A, Schlünzen K, Suppan P, Baldasano J, Brunner D, et al. (2014) Online coupled regional meteorology chemistry models in Europe: current status and prospects. Atmos Chem Phys 14 317-398. View
  14. Baklanov A, Brunner D, Carmichael G, Flemming J, Freitas S, et al. (2018) Key issues for seamless integrated chemistry-meteorology modeling. Bull Am Meteorol Soc 98: 2285-2292. View
  15. Ots R, Heal MR, Young DE, Williams LR, Allan JD, et al. (2018) Modelling carbonaceous aerosol from residential solid fuel burning with different assumptions for emissions. Atmos Chem Phys 18: 4497-4518. View
  16. Grell GA, Peckham SE, Schmitz R, McKeen SA, Frost G, et al. (2005) Fully coupled “online” chemistry within the WRF model. Atmos Environ 39: 6957- 6975. View
  17. Stockwell WR, Middleton P, Chang JS, Tang X (1990) The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J Geophys Res 95: 16343-16367. View
  18. Archer-Nicholls S, Lowe D, Utembe S, Allan J, Zaveri RA, et al. (2014) Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem. Geosci Model Dev 7: 2557-2579. View
  19. Ackermann IJ, Hass H, Memmesheimer M, Ebel A, Binkowski FS, et al. (1998) Modal aerosol dynamics model for Europe: Development and first applications. Atmos Environ 32: 2981-2999. View
  20. Schell B, Ackermann IJ, Hass H, Binkowski FS, Ebel A, et al. (2001) Modeling the formation of secondary organic aerosol within a comprehensive air quality model system. J Geophys Res 106: 28275-28293. View
  21. Lowe D, Archer-Nicholls S, Morgan W, Allan J, Utembe S, et al. (2015) WRFChem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe. Atmos Chem Phys 15: 1385-1409. View