Profile
International Journal of Earth & Environmental Sciences Volume 3 (2019), Article ID 3:IJEES-159, 5 pages
https://doi.org/10.15344/2456-351X/2018/159
Review Article
Energy Saving Potential by Using Maisotsenko-Cycle in Different Applications

Demis Pandelidis*, Anna Pacak and Sergey Anisimov

Wrocław University of Science and Technology, 50-370 Wrocław, Poland
Dr. Demis Pandelidis, Wrocław University of Science and Technology, 50-370 Wrocław, Poland; E-mail: remik71@tlen.pl
19 September 2018; 19 November 2018; 21 November 2018
Pandelidis D, Pacak A, Anisimov S (2018) Energy Saving Potential by Using Maisotsenko-Cycle in Different Applications. Int J Earth Environ Sci 3: 159. doi: https://doi.org/10.15344/2456-351X/2018/159

References

  1. The future of cooling-Report (2018) International Energy Agency. View
  2. Mahmood MH, Sultan M, Koyama TMS, Maisotsenko VS (2016) Overview of the Maisotsenko cycle-A way towards dew point evaporative cooling. Renewable and Sustainable Energy Reviews 66: 537-555. View
  3. Anisimov S, Pandelidis D, Danielewicz J (2014) Numerical analysis of selected evaporative exchangers with the Maisotsenko cycle. Energy Convers Manag 88: 426-441. View
  4. Tyagi SK, Pandey AK, Pant PC, Tyagi VV (2012) Formation, potential and abatement of plume from wet cooling towers: A review. Renew Sustain Energy Rev 16: 3409-3429. View
  5. Anisimov S, Kozlov A, Glanville P, Khinkis M, Maisotsenko V, et al. (2014) Advanced Cooling Tower Concept for Commercial and Industrial Applications. Proc ASME PowerConf, Maryland, USA: ASME. View
  6. Khalatov A, Karp I, Isakov B (2011) Prospects of the Maisotsenko thermodynamic cycle application in Ukraine. Int J Energy Clean Environ 12: 141-157. View
  7. Gillan L, Glanville P, Kozlov A (2011) Maisotsenko-Cycle Enhanced Cooling Towers. Proc Cool Technol Inst Annu Conf, Texas, USA: Cooling Technology Institute. View
  8. Morozyuk T, Tsatsaronis G (2011) Advanced cooling tower concept based on the Maisotsenko-cycle-an exergetic evaluation. Int J Energy Clean Environ 12: 159-173. View
  9. Sverdlin B, Tikhonov A, Gelfand R (2011) Theoretical possibility of the Maisotsenko cycle application to decrease cold water temperature in cooling towers. Int J Energy Clean Environ 12: 175-185. View
  10. Yee SK, Milanovic JV, Hughes FM (2008) Overview and comparative analysis of gas turbine models for system stability studies. IEEE Trans Power Syst 23: 108-118. View
  11. Jonsson M, Yan J (2005) Humidified gas turbines-a review of proposed and implemented cycles. Energy 30: 1013-1078. View
  12. Poullikkas A (2005) An overview of current and future sustainable gas turbine technologies. Renew Sustain Energy Rev 9: 409-443. View
  13. Saghafifar M, Gadalla M (2015) Innovative inlet air cooling technology for gas turbine power plants using integrated solid desiccant and Maisotsenko cooler. Energy 87: 663-677. View
  14. Saghafifar M, Gadalla M (2015) Analysis of Maisotsenko open gas turbine power cycle with a detailed air saturator model. Appl Energy 149: 338-353. View
  15. Saghafifar M, Gadalla M (2015) Analysis of Maisotsenko open gas turbine bottoming cycle. Appl Therm Eng 82: 351-359. View
  16. Khalatov AA, Severin SD, Brodetsky PI, Maisotsenko VS (2015) Brayton's subatmospheric inverse cycle with regeneration of output heat by Maisotsenko's cycle. Reports of the National Academy of Sciences of Ukraine 1: 72-79. View