Profile
International Journal of Earth & Environmental Sciences Volume 2 (2017), Article ID 2:IJEES-143, 7 pages
https://doi.org/10.15344/2456-351X/2017/143
Research Article
Optimized Planning of Terrestrial Laser-scanner Surveys in Complex Archaeological Environments

Diego Gonzalez-Aguilera2*, Ana del Campo-Sánchez1, David Hernández-López1 and Susana del Pozo2

1Institute for Regional Development (IDR), Albacete, University of Castilla-La Mancha. Campus Universitario s/n, 02071, Albacete, Spain
2Department of Cartographic and Land Engineering,University of Salamanca, Higher Polytechnic School, Hornos Caleros,50, 05003Avila, Spain
Prof. Diego Gonzalez-Aguilera, Department of Cartographic and Land Engineering,University of Salamanca, Higher Polytechnic School, Hornos Caleros,50, 05003Avila, Spain; E-mail: daguilera@usal.es
04 October 2017; 27 November 2017; 29 November 2017
Gonzalez-Aguilera D, Campo-Sánchez A, Hernández-López D, Pozo S (2017) Optimized Planning of Terrestrial Laser-scanner Surveys in Complex Archaeological Environments. Int J Earth Environ Sci 2: 143. doi: https://doi.org/10.15344/2456-351X/2017/143

References

  1. Gonzalez-Aguilera D, Del Pozo S, Lopez G, Rodriguez-Gonzalvez P (2012) From point cloud to CAD models: Laser and optics geotechnology for the design of electrical substations. Optics & Laser Technology 44: 1384-1392 View
  2. Ghimire S, Xystrakis F, Koutsias N (2017) Using Terrestrial Laser Scanning to Measure Forest Inventory Parameters in a Mediterranean Coniferous Stand of Western Greece. PFG-Journal of Photogrammetry, Remote Sensing and Geoinformation Science 4: 213-225. View
  3. Petlicki M (2017) Inferring subglacial topography of the Emerald Icefalls (King George Island, Antarctica) from ice surface terrestrial laser scanning. IEEE, pp 1-4 View
  4. Rošer J (2017) Application of terrestrial laser scanning in documenting an underground coal mine pumping station. Materials and Geoenvironment. View
  5. Yu X, Zhang T (2017) Application of terrestrial 3D laser scanning technology in spatial information acquisition of urban buildings. IEEE, pp 1107-1111 View
  6. Wang W, Zhao W, Huang L, Vimarlund V, Wang Z, et al. (2014) Applications of terrestrial laser scanning for tunnels: a review. Journal of Traffic and Transportation Engineering (English Edition) 1: 325-337 View
  7. Fabbri S, Giambastiani BMS, Sistilli F, Scarelli F, Gabbianelli G, et al. (2017) Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology. Geomorphology 295: 436-451 View
  8. Gonzalez-Aguilera D, Muñoz-Nieto A, Rodriguez-Gonzalvez P, Menéndez M (2011) New tools for rock art modelling: automated sensor integration in Pindal Cave. Journal of Archaeological Science 38: 120-128 View
  9. Torres-Martínez JA, Seddaiu M, Rodríguez-Gonzálvez P, Hernández- López D, González-Aguilera D, et al. (2015) A Multi-Data Source and Multi- Sensor Approach for the 3d Reconstruction and Visualization of a Complex Archaelogical Site: the Case Study of Tolmo de Minateda. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40: 37
  10. Reino AX (1997) La aplicación del GPS a la arqueología / The Application of GPS Technology in Archaeology. Trabajos de Prehistoria; Madrid 54: 155-166
  11. Schiffer MB, Sullivan AP, Klinger TC (1978) The design of archaeological surveys. World Archaeology 10: 1-28 View
  12. Kadlec RH (2000) The inadequacy of first-order treatment wetland models. Ecological Engineering 15: 105-119 View
  13. Rice R, Bales RC (2010) Embedded-sensor network design for snow cover measurements around snow pillow and snow course sites in the Sierra Nevada of California: EMBEDDED-SENSOR NETWORK DESIGN FOR SNOW COVER. Water Resources Research. View
  14. Fraser CS (1984) Network design considerations for non-topographic photogrammetry. Photogrammetric Engineering & Remote Sensing 50: 1115-1126 View
  15. Gordon SJ, Lichti DD (2004) Terrestrial Laser Scanners with a Narrow Field of View: The Effect on 3d Resection Solutions. Survey Review 37: 448-468 View
  16. Boukamp F, Akinci B (2007) Automated processing of construction specifications to support inspection and quality control. Automation in Construction 17: 90-106 View
  17. Buckley SJ, Howell JA, Enge HD, Kurz TH (2008) Terrestrial laser scanning in geology: data acquisition, processing and accuracy considerations. Journal of the Geological Society 165: 625-638 View
  18. Van Gosliga R, Lindenbergh R, Pfeifer N (2006) Deformation analysis of a bored tunnel by means of terrestrial laser scanning. IAPRS 36: 25-27 View
  19. Maas HG, Bienert A, Scheller S, Keane E (2008) Automatic forest inventory parameter determination from terrestrial laser scanner data. International Journal of Remote Sensing 29: 1579-1593 View
  20. QGIS Development Team QGis.
  21. Canon Inc. (2017) Canon EOS 5D Mark II. Accessed View
  22. FARO Technologies Inc. (2017) FARO Focus3D X 330. In: www.faro.com. Accessed
  23. Trimble Inc. Trimble Bullet III. View
  24. u-blox (2017) Ublox EVK-6. In: u-blox. Accessed View
  25. Digifly Digifly VL100 View
  26. Takasu T, Yasuda A (2009) Development of the low-cost RTK-GPS receiver with an open source program package RTKLIB. In: international symposium on GPS/GNSS. International Convention Centre Jeju, Korea, pp 4-6 View
  27. Leica Geosystems AG Leica GPS1200 Series (2017) Accessed View
  28. Casal LA, BrogioloGP, Lloret SG, Parras BG, Guillén PC, et al. (2012) El Tolmo de Minateda (Hellín, Albacete, España): un proyecto de investigación y puesta en valor del patrimonio. The Tolmo of Minateda (Hellín, Albacete, Spain): a project of investigation and promotion of cultural heritage View
  29. Abad Casal L, Gutiérrez Lloret S, Gamo Parras B, Canovas Guillén P (2011) Tolmo. Guía del parque arqueológico. Una ciudad en el camino. Junta de Comunidades de castilla-La Mancha.
  30. Čučković Z Viewshed Analysis Plugin.
  31. Lichti DD (2004) A resolution measure for terrestrial laser scanners. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 34: 6 View
  32. FARO Technologies Inc. FARO SCENE. FARO Technologies Inc., EE.UU.