https://doi.org/10.15344/2456-351X/2017/131
Abstract
A method to use fences filled inside with activated carbon fibers (ACF) is presented for reduction of high NO2 concentration in urban atmosphere without excess energy use. Polluted air mass in road space moves with natural- and car-induced- winds to contact with- and to flow through- ACF fences, and the ACF layer removes these pollutants. Two parameters determining the performance of the ACF fences in terms of NOx abatement were identified as (1) resistance coefficient of the ACF layer to air flow, and (2) chemical reactivity of ACF layer for NOx removal. By varying these two parameter values in their ranges obtained by laboratory experiments, the reduction of NOx concentration at roadside by the ACF fences was numerically evaluated under an idealized situation in which two cases were considered; one is the double-fences placed at both sides of road and the other is single fence set at downwind side of the road. The results showed that in both cases these “energy-free” equipment can decrease NOx concentration by 15~55% at roadside. Furthermore, it was indicated that in the double-fence case the ACF fence with lower permeability (larger resistance coefficient) shows higher reduction of NOx, while in the single fence case higher permeability reduces NOx more.