Profile
International Journal of Computer & Software Engineering Volume 6 (2021), Article ID 6:IJCSE-164, 11 pages
https://doi.org/10.15344/2456-4451/2021/164
Research Article
Detection and Analysis of Pseudogenes in Non-coding DNA

Gabriella Trucco* and Vittorio Cerioli

Department of Computer Science, University of Milan, via Celoria, Milan, Italy
Dr. Gabriella Trucco, Department of Computer Science, University of Milan, via Celoria, Milan, Italy; E-mail: gabriella.trucco@unimi.it
16 March 2021; 17 April 2021; 19 April 2021
Trucco G, Cerioli V (2021) Detection and Analysis of Pseudogenes in Noncoding DNA. Int J Comput Softw Eng 6: 164. doi: https://doi.org/10.15344/2456-4451/2021/164

References

  1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, et al. (2001) International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome. Nature 409: 860-921. [CrossRef] [Google Scholar] [PubMed]
  2. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, et al. (2012) Systematic localization of common disease associated variation in regulatory DNA. Science 337: 1190-1195. [CrossRef] [Google Scholar] [PubMed]
  3. Schaub MA, Boyle AP, Kundaje A, Batzoglou S, Snyder M, et al. (2012) Linking disease associations with regulatory information in the human genome. Genome Res 22: 1748-2759. [CrossRef] [Google Scholar] [PubMed]
  4. Martinez AF, Abe Y, Hong S, Molyneux K, Yarnell D, et al. (2016) An ultraconserved brain-specific enhancer within DGRL3 (LPHN3) underpins attention-deficit/hyperactivity disorder susceptibility. Biol Psychiatry 80: 943-954. [CrossRef] [Google Scholar] [PubMed]
  5. Amiel J, Benko S, Gordon CT, Lyonnet S (2010) Disruption of long-distance higly conserved noncoding elements in neurocristopathies Ann N Y Acad Sci 1214: 34-46. [CrossRef] [Google Scholar] [PubMed]
  6. Braconi C, Valeri N, Kogure T, Gasparini P, Huang N, et al. (2011) Expression and functional role of a transcribed noncoding RNA with an ultraconserved element in hepatocellular carcinoma. Proc Natl Acad Sci USA 108: 786-791. [CrossRef] [Google Scholar] [PubMed]
  7. Bao BY, Lin VC, Yu CC, Yin HL, Chang TY, et al. (2016) Genetic variants in ultraconserved regions associate with prostate cancer recurrence and survival. Scientific Reports 6: 22124. [CrossRef] [Google Scholar]
  8. Zhang Fand, Lupsky JR (2015) Non-coding genetic variants in human disease. Hum Mol Genet 24: R102-R110. [CrossRef] [Google Scholar] [PubMed]
  9. Eddy SR (2014) The C-value paradox, junk DNA and ENCODE. Curr Biol 22: R898-R899. [CrossRef] [Google Scholar] [PubMed]
  10. Palazzo AF, Gregory TR (2014) The case for junk DNA. PLoS Genet 10: e1004351. [CrossRef] [Google Scholar] [PubMed]
  11. Koonin EV (2005) Orthologs, Paralogs and Evolutionary Genomics. Annu Rev Genet 39: 309-338. [CrossRef] [Google Scholar] [PubMed]
  12. Zheng D, Frankish A, Baertsch R, Kapranov P, Reymond A, et al. (2007) Pseudogenes in the ENCODE regions: consensus annotation, analysis of transcription, and evolution. Genome Res 17: 839-851. [CrossRef] [Google Scholar] [PubMed]
  13. Niimura Y, Nei M (2007) Extensive gains and losses of olfactory receptor genes in mammalian evolution. PLoS One 2: 860-921. [CrossRef] [Google Scholar] [PubMed]
  14. Pink RC, Wicks K, Caley DP, Punch EK, Jacobs L, et al. (2011) Pseudogenes: pseudo-functional or key regulators in health and disease? RNA 17: 792-798. [CrossRef] [Google Scholar] [PubMed]
  15. Korneev SA, Park JH, O’Shea M (1999) Neuronal Expression of Neural Nitrix Oxide Synthase (nNOS) Protein is suppressed by an Antisense RNA Transcribed from an NOS Pseudogene. J Neurosci 19: 7711-7720. [CrossRef] [Google Scholar] [PubMed]
  16. Zhang ZD, Frankish A, Hunt T, Harrow J, Gerstein M, et al. (2010) Identification and analysis of unitary pseudogenes: historic and contemporary gene losses in humans and other primates. Genome Biol 11: R26. [CrossRef] [Google Scholar] [PubMed]
  17. Mighell AJ, Smith NR, Robinson PA, Markham AF (2000) Vertebrate pseudogenes. FEBS letters 468: 109-114. [CrossRef] [Google Scholar] [PubMed]
  18. D’Errico I, Gadaleta G, Saccone C (2014) Pseudogenes in metazoa: origin and features. Brief Funct Genomic Proteomic 3: 157-167. [CrossRef] [Google Scholar] [PubMed]
  19. Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 200 ribosomal protein pseudogenes in the human genome. Genome Res 12: 1466-1482. [CrossRef] [Google Scholar] [PubMed]
  20. McDonell L, Drouin G (2012) The abundance of processed pseudogenes derived from glycolitic genes is correlated with their expression level. Genome 5: 147-151. [CrossRef] [Google Scholar] [PubMed]
  21. Vinckenbosch N, Dupanloup I, Kaessmann H (2006) Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA 103: 3220-3225. [CrossRef] [Google Scholar] [PubMed]
  22. Lin M, Pedrosa E, Shah A, Hrabovsky A, Maqbool S, et al. (2011) RNA-seq of human neurons derived from iPS cells reveals candidate long non-coding RNAs involved in neurogenesis and neuropsychiatric disorders. PLoS Oone 6: e22356. [CrossRef] [Google Scholar] [PubMed]
  23. Poliseno L, Salamena L, Zhang J, Carver B, Haveman WJ, et al. (2010) A coding-independent function of gene and pseudogene mRNAs regulates tumor biology. Nature 465: 1033-1038. [CrossRef] [Google Scholar] [PubMed]
  24. Zhou M, Baitei EY, Alzahrani AS, Al-Mohanna F, Farid NR, et al. (2009) Oncogenic activation of MAP kinase by BRAF pseudogene in thyroid tumors. Neoplasia 11: 57-65. [CrossRef] [Google Scholar] [PubMed]
  25. Chiefari E, Iiritano S, Paonessa F, Pra IL, Arcidiacono B, et al. (2010) Pseudogene-mediated pstrascriptional silencing of HMGA1 can result in insulin resistance and Type 2 diabetes. Nat Commun 1: 40. [CrossRef] [Google Scholar] [PubMed]
  26. Khachane AN, Harrison PM (2009) Assessing the genomic evidence for conserved transcribed pseudogenes under selection. BMC Genomics 10: 435. [CrossRef] [Google Scholar] [PubMed]
  27. Podlaha O, Zhang J (2004) Nonneutral evolution of the transcribed pseudogene Makorin1-p1 in mice. Mol Biol Evol 21: 2202-2209. [CrossRef] [Google Scholar] [PubMed]
  28. Ross J (1996) Control of messenger RNA stability in higher eukaryotes. Trends Genet 12: 171-175. [CrossRef] [Google Scholar] [PubMed]
  29. Pink RC, Carter DRF (2013) Pseudogenes as regulators of biological function. Essays Biochem 54: 103-112. [CrossRef] [Google Scholar] [PubMed]
  30. Harrow J, Denoeud F, Frankish A, Reymond A, Chen CK, et al. (2006) GENCODE: producing a reference annotation for ENCODE. Genome Biology 7: S4. [CrossRef] [Google Scholar]
  31. Zhang Z, Carriero N, Zheng D, Karro J, Harrison PM, et al. (2006) PseudoPipe: An automated pseudogene identification pipeline. Bioinformatics 22: 1437-1439. [CrossRef] [Google Scholar] [PubMed]
  32. Das MK, Dai HK (2007) A survey of DNA motif finding algorithms. BMC Bioinformatics 8: S21. [CrossRef] [Google Scholar] [PubMed]
  33. Thompson W, Rouchka EC, Lawrence CE (2003) Gibbs Recursive Sampler: finding transcription factor binding sites. Nucleic Acids Res 31: 3580-3585. [CrossRef] [Google Scholar] [PubMed]
  34. Mitrophanov AY, Borodovsky M (2005) Statistical significance in biological sequence analysis. Brief Bioinform 7: 2-24. [CrossRef] [Google Scholar] [PubMed]
  35. Durbin R, Eddy SR, Krogh A, Mitchinson G (1998) Biological Sequence Analysis. Cambridge University Press.
  36. Gropl C (2012) Markov Chains and Hidden Markov Models.
  37. Isaev A (2004) Introduction to Mathematical Methods. Bioinformatics in Springer.
  38. Haggstrom O (2002) Finite Markov Chains in Algorithmic Applications. Cambridge University Press.
  39. Lawrence CE, Altschul SF, Boguski MS, Liu JS, Neuwald AF, et al. (1993) Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment. Science 262: 208-214. [CrossRef] [Google Scholar] [PubMed]
  40. Rouchka EC (2008) A brief Overview of Gibbs Sampling. University of Louisville Bioinformatics Laboratory Technical Report. [Google Scholar]
  41. Bier A, Oviedo-Landaverde I, Zhao J, Mamane Y, Kandouz M, et al. (2009) Connexin43 pseudogene in breast cancer cells offers a novel therapeutic target. Mol Cancer Ther 8: 786-793. [CrossRef] [Google Scholar] [PubMed]
  42. Tam OH, Aravin AA, Stein P, Girard A, Murchison EP, et al. (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 8: 534-538. [CrossRef] [Google Scholar] [PubMed]
  43. Illingworth RS, Gruenewald-Schneider U, Webb S, Kerr ARW, James KD, et al. (2010) Orphan CpG islands identify numerous conserve promoters in the mammalian genome. PLoS Genet 6: 786-793. [CrossRef] [Google Scholar] [PubMed]
  44. Zheng D, Gerstein MB (2006) A computational approach for identifying pseudogenes in the ENCODE regions. Genome Biol 7: S13. [CrossRef] [Google Scholar] [PubMed]
  45. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 197 : 261-282. [CrossRef] [Google Scholar] [PubMed]
  46. Takai D, Jones PA (2002) Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proc Natl Acad Sci USA 99: 3740-3745. [CrossRef] [Google Scholar] [PubMed]
  47. Barazandeh A, Mohammadabadi MR, Ghaderi-Zefrehei M, Rafeied F, Imumorin IG, et al. (2019) Whole genome comparative analysis of CpG islands in camelid and other mammalian genomes. Mammalian Biology 98: 73-79. [CrossRef] [Google Scholar]
  48. Barazandeh A, Mohammadabadi MR, Ghaderi M, Nezamabadipour H (2016) Genome-wide analysis of CpG islands in some livestock genomes and their relationship with genomic features. Czech Journal of Animal Science 61: 487-495. [CrossRef] [Google Scholar]
  49. Barazandeh A, Mohammadabadi MR, Ghaderi-Zefrehei M, Nezamabadipour H (2016) Predicting CpG Islands and Their Relationship with Genomic Feature in Cattle by Hidden Markov Model Algorithm. Iranian Journal of Applied Animal Science 6: 571-579. [Google Scholar]