Profile
International Journal of Computer & Software Engineering Volume 6 (2021), Article ID 6:IJCSE-163, 12 pages
https://doi.org/10.15344/2456-4451/2021/163
Original Article
Special Issue: Wireless and Mobile Networks and Their Applications
Efficient Directional Antenna Design Suitable for Power Internet of Things Scenarios

Jingcheng Zhao1, Xu Chao1, Peng Wang2 and Tao Hong3,4,*

1School of Electronic and Information Engineering, Beihang University, Beijing, China
2Joint War College, National Defense University of PLA, China
3Yunnan Innovation Institute, BUAA, Kunming, China
4Beijing Key Laboratory for Microwave Sensing and Security Applications, Beihang University, Beijing, China
Dr. Tao Hong, Beijing Key Laboratory for Microwave Sensing and Security Applications, Beihang University, Beijing, China; E-mail: hongtao@buaa.edu.cn
10 March 2021; 29 March 2021; 31 March 2021
Zhao J, Chao X, Wang P, Hong T (2021) Efficient Directional Antenna Design Suitable for Power Internet of Things Scenarios. Int J Comput Softw Eng 6: 163. doi: https://doi.org/10.15344/2456-4451/2021/163

References

  1. Lu K, Wang G, Qu F, Zhong Z (2015) Signal detection and BER analysis for RF-powered devices utilizing ambient backscatter. International Conference on Wireless Communications & Signal Processing (WCSP), Nanjing. [CrossRef] [Google Scholar]
  2. Darsena D, Gelli G, Verde F (2017) Modeling and Performance Analysis of Wireless Networks With Ambient Backscatter Devices. Communications IEEE Transactions 65: 1797-1814. [CrossRef] [Google Scholar]
  3. Kang CH, Lee WS, You YH, Song HK (2017) Signal Detection Scheme in Ambient Backscatter System With Multiple Antennas. Access IEEE 5: 14543-14547. [CrossRef] [Google Scholar]
  4. Zhao W, Wang G, Gao F, Zou Y, Atapattu S, et al. (2017) Channel capacity and lower bound for ambient backscatter communication systems. Wireless Communications and Signal Processing (WCSP) 9th International Conference. [CrossRef] [Google Scholar]
  5. Qian J, Gao F, Wang G, Jin S, Zhu H (2017) Noncoherent Detections for Ambient Backscatter System. Wireless Communications IEEE Transactions 16: 1412-1422. [CrossRef] [Google Scholar]
  6. Zhi-yuan Z, He R, Jie T (2010) A method for optimizing the position of passive UHF RFID tags. IEEE International Conference on RFID-Technology and Applications, Guangzhou. [CrossRef] [Google Scholar]
  7. Nikitin P, Rao K (2007) Performance limitations of passive UHF RFID systems. IEEE Antennas and Propagation Society International Symposium. [CrossRef] [Google Scholar]
  8. Nikitin PV, Rao KVS, Lazar S (2007) An overview of near field UHF RFID. IEEE International Conference on RFID. [CrossRef] [Google Scholar]
  9. Mcelroy D, Turban E (1998) Using smart cards in electronic commerce. International Journal of information management 18: 61-72. [CrossRef] [Google Scholar]
  10. Yu L (2007) The Challenges of RFID Technology in Manufacturing Applications. Journal of Computer Applications 11: 51-54.
  11. Min LYT, Zeng JF (2007) RFID systems engineering and application guidelines. Beijing: China Machine Press.
  12. Chen S, Thomas V (2001) Optimization of inductive RFID technology for product management. [CrossRef] [Google Scholar]
  13. Hodges S, Thorne A, Mallinson H, Floerkemeier C (2007) Assessing and optimizing the range of uhf rfid to enable real-world pervasive computing applications. International Conference on Pervasive Computing. [CrossRef] [Google Scholar]
  14. Porter JD, Billo RE, Mickle MH (2004) A Standard Test Protocol for evaluation of Radio Frequency Identification Systems for Supply Chain Applications. Journal of Manufacturing Systems 23: 46-55. [CrossRef] [Google Scholar]
  15. Chen B, Zhu C, Shu L, Su M, Wei J, et al. (2016) Securing Uplink Transmission for Lightweight Single-Antenna UEs in the Presence of a Massive MIMO Eavesdropper. IEEE 4: 5374-5384. [CrossRef] [Google Scholar]
  16. Hu J, Yan S, Shu F, Wang J, Li J, et al. Artificial-Noise-Aided Secure Transmission With Directional Modulation Based on Random Frequency Diverse Arrays. IEEE 5: 1658-1667. [CrossRef] [Google Scholar]
  17. Iwata S, Ohtsuki T, Kam PY (2017) A Lower Bound on Secrecy Capacity for MIMO Wiretap Channel Aided by a Cooperative Jammer With Channel Estimation Error. IEEE 5: 4636-4645. [CrossRef] [Google Scholar]
  18. Fang D, Qian Y, Hu RQ (2018) Security for 5G Mobile Wireless Networks. IEEE 6: 4850-4874. [CrossRef] [Google Scholar]
  19. Yang N, Wang L, Geraci G, Elkashlan M, Yuan J, et al. (2015) Safeguarding 5G wireless communication networks using physical layer security. IEEE Communications Magazine 53: 20-27. [CrossRef] [Google Scholar]
  20. Zhang J, Zhu F, Huang Y, Yang L (2017) Constant envelope precoding for secure millimeter-wave wireless communication. IEEE 28th Annual International Symposium. [CrossRef] [Google Scholar]
  21. Carrel R (1961) The design of log-periodic dipole antennas. IRE Int Conv Rec 9: 61-75. [CrossRef] [Google Scholar]
  22. Imbriale WA (1974) Optimum designs of broad and narrow band parabolic ref lector antennas fed with log-periodic dipole arrays. International Symposium Antennas and Propagation Society 12: 262-265. [CrossRef] [Google Scholar]
  23. Casula GA, Maxia P, Mazzarella G (2010) A printed LPDA with UWB capability. Proc Int Workshop Antenna Technol. [CrossRef] [Google Scholar]
  24. Navarro EA, Blanes JM, Carrasco JA, Reig C, Navarro EA, et al. (2006) A new bi-faced log periodic printed antenna. Microw Opt Technol Lett 48: 402-405. [CrossRef] [Google Scholar]
  25. Casula GA, Maxia P, Mazzarella G, Montisci G (2013) Design of a printed log-periodic dipole array for ultra-wideband applications. Prog Electromagn Res C 38: 15-26. [CrossRef] [Google Scholar]
  26. Kaneda N, Deal WR, Qian Y, Waterhouse R, Itoh T, et al. (2002) A broad-band planar Quasi-Yagi antenna. IEEE Trans Antennas Propag 50: 1158-1160. [CrossRef] [Google Scholar]
  27. Grajek PR, Schoenlinner B, Rebeiz GM (2004) A 24-GHz high-gain Yagi-Uda antenna array. IEEE Trans Antennas Propag 52: 1257-1261. [CrossRef] [Google Scholar]
  28. Zheng G, Kishk AA, Yakovlev AB, Glisson AW (2004) Simplified feed for a modified printed Yagi antenna. Electron Lett 40: 464-465. [CrossRef] [Google Scholar]
  29. DeJean GR, Tentzeris MM (2007) A new high-gain microstrip Yagi array antenna with a high front-to-back (F/B) ratio for WLAN and millimeter-wave applications. IEEE Trans Antennas Propag 55: 298-304. [CrossRef] [Google Scholar]
  30. Nascimento D, Lacava JC (2015) Design of Arrays of Linearly Polarized Patch Antennas on an FR4 Substrate: Design of a probe-fed electrically equivalent microstrip radiator. IEEE Antennas and Propagation Magazine 57: 12-22. [CrossRef] [Google Scholar]
  31. An H, Nauwelaers B, Van de Capelle A (1993) Noise figure measurement of receiving active microstrip antennas. Electronics Letters 29: 1594-1596. [CrossRef] [Google Scholar]
  32. Zhang Y, Gong D, Cheng J (2017) Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in Classification. IEEE/ACM Transactions on Computational Biology and Bioinformatics 14: 64-75. [CrossRef] [Google Scholar]
  33. Xue B, Cervante L, Shang L, Browne WN, Zhang MJ, et al. (2013) Multi-objective evolutionary algorithms for filter based feature selection in classification. Int J Artif Intell Tools 22: 1-34. [CrossRef] [Google Scholar]
  34. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Trans Evol Comput 3: 257-271. [CrossRef] [Google Scholar]
  35. Hamdani TM, Won JM, Alimi AM, Karray F (2007) Multi-objective feature selection with NSGA II. Int Conf Adaptive Natural Comput Algorithms. [CrossRef] [Google Scholar]