Profile
International Journal of Computer & Software Engineering Volume 1 (2016), Article ID 1:IJCSE-109, 8 pages
https://doi.org/10.15344/2456-4451/2016/109
Original Article
Advanced Clustering Method for Neurological Assessment Using Graph Models

Herbert F. Jelinek1,2, David J. Cornforth2 and Andrei V. Kelarev1*

1Centre for Research in Complex Systems and School of Community Health, Charles Sturt University, Albury, Australia
2Applied Informatics Research Group, University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
Dr. Andrei V. Kelarev, Centre for Research in Complex Systems and School of Community Health, Charles Sturt University, Albury, Australia; E-mail: andreikelarev-charlessturtuniversity@yahoo.com
25 June 2016; 16 December 2016; 19 December 2016
Jelinek HF, Cornforth DJ, Kelarev AV (2016) Advanced Clustering Method for Neurological Assessment Using Graph Models. Int J Comput Softw Eng 1: 109. doi: https://doi.org/10.15344/2456-4451/2016/109

References

  1. Vinik AI, Maser RE, Mitchell BD, Freeman R (2003) Diabetic autonomic neuropathy. Diabetes Care 26: 1553-1579. View
  2. Witzel II, Jelinek HF, Khalaf K, Lee S, Khandoker A, Alsafar H (2015) Identifying common genetic risk factors of diabetic neuropathies. Frontiers in Endocrinology 6: 1-18. View
  3. Vinik AI, Erbas T, Casellini CM (2013) Diabetic cardiac autonomic neuropathy, inflammation and cardiovascular disease. J Diabetes Investigation 4: 4-18. View
  4. TFESC/NASPE (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Euro Heart J 17: 354-381. View
  5. Dimitropoulos G, Tahrani AA, Stevens MJ (2014) Cardiac autonomic neuropathy in patients with diabetes mellitus. World Journal of Diabetes 5: 17-39. View
  6. Thayer JF, Yamamoto SS, Brosschot JF (2010) The relationship of autonomic imbalance, heart rate variability and cardiovascular disease risk factors. Int J Cardiology 141: 122 131. View
  7. Karmakar CK, Khandoker AH, Jelinek HF, Palaniswami M (2013) Risk stratification of cardiac autonomic neuropathy based on multi-lag Tone– Entropy. Medical & Biological Engineering & Computing 51, 537-546. View
  8. Tan CO (2013) Heart rate variability: are there complex patterns? Frontiers in Physiology 4: article 165: 1-3. View
  9. Imam MH, Karmakar C, Khandoker AH, Jelinek HJ (2014) Analysing cardiac autonomic neuropathy in diabetes using electrocardiogram derived systolic-diastolic interval interactions. Computing in Cardiology 41: 85-88. View
  10. Baron R, Ewing DJ (1999) Heart rate variability. In: Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Physiology. Deuschl & A. Eisen (Eds.). Amsterdam: Elsevier, pp. 283-286. View
  11. Spallone V, Menzinger G (1997) Diagnosis of cardiovascular autonomic neuropathy in diabetes. Diabetes 46: 67-76. View
  12. Jelinek HF, Pham P, Struzik ZR, Spence I (2007) Short term ECG recording for the identification of cardiac autonomic neuropathy in people with diabetes mellitus. Proceedings of the 19th International Conference on Noise and Fluctuations, Tokyo, Japan, pp. 683 686.
  13. Khandoker AH, Weiss DN, Skinner JE, Anchin JM (2011) PD2i heart rate complexity measure can detect cardiac autonomic neuropathy: an alternative test to Ewing battery. Computing in Cardiology 38: 525-528. View
  14. Kelarev AV, Stranieri A, Yearwood JL, Abawajy J, Jelinek HF (2012) Improving classifications for cardiac autonomic neuropathy using multilevel ensemble classifiers and feature selection based on random forest. Proceedings of Data Mining and Analytics, AusDM 2012, 11th Australasian Data Mining Conference, CRPIT 134: 93-102. View
  15. Stranieri A, Abawajy J, Kelarev A, Huda S, Chowdhury M, Jelinek HF (2013) An approach for Ewing test selection to support the clinical assessment of cardiac autonomic neuropathy. Artificial Intelligence in Medicine 58: 185- 193. View
  16. Abawajy J, Kelarev A, Chowdhury M, Stranieri A, Jelinek HF (2013) Predicting cardiac autonomic neuropathy category for diabetic data with missing values. Computers in Biology and Medicine 43: 1328-1333. View
  17. Kelarev AV, Abawajy J, Stranieri A, Jelinek HF (2013) Empirical investigation of decision tree ensembles for monitoring cardiac complications of diabetes. International Journal of Data Warehousing and Mining 9: 1-18. View
  18. Jelinek HF, Abawajy JH, Kelarev AV, Chowdhury MU, Stranieri A (2014) Decision trees and multi level ensemble classifiers for neurological diagnostics. AIMS Medical Science 1: 1-12. View
  19. Jelinek HF, Abawajy JH, Cornforth D, Kowalczyk A, Negnevitsky M, Chowdhury MU, Krones R, Kelarev AV (2015) Multi-layer attribute selection and classification algorithm for the diagnosis of cardiac autonomic neuropathy based on HRV attributes. AIMS Medical Science 2: 396 409. View
  20. Abawajy J, Kelarev A, Chowdhury MU, Jelinek HF (2016) Enhancing predictive accuracy of cardiac autonomic neuropathy using blood biochemistry features and iterative multi-tier ensembles. IEEE J. Biomedical Health Informatics 20: 408-415. View
  21. Turcott RG, Teich MC(1996) Fractal behavior of the electrocardiogram: distinguishing heart failure and normal patients using wavelet analysis. Annals of Biomedical Engineering 24: 269-293. View
  22. Teich MC, Lowen SB, Jost BM, Vibe-Rheymer K (2000) Heart rate variability: measures and models, arXiv: physics/0008016v1[physics.bioph], 7 August 2000, pp. 1 84. View
  23. Ewing DJ, Campbell JW, Clarke BF (1980) The natural history of diabetic autonomic neuropathy. Q. J. Med. 49: 95-100. View
  24. Ewing DJ, Martyn CN, Young RJ, Clarke BF (1985) The value of cardiovascular autonomic functions tests: 10 years experience in diabetes. Diabetes Care 8: 491-8. View
  25. Khandoker AH, Jelinek HF, Palaniswami M(2009) Identifying diabetic patients with cardiac autonomic neuropathy by heart rate complexity analysis. BioMedical Engineering OnLine 8: 1-12. View
  26. Laitinen T, Vauhkonen I, Niskanen L, Hartikainen J, Lansimies E, Uusitupa M, Laakso M. (1999) Power spectral analysis of heart rate variability during hyperinsulinemia in nondiabetic offspring of type 2 diabetic patients: evidence for possible early autonomic dysfunction in insulin-resistant subjects. Diabetes 48: 1295-1299. View
  27. Cornforth DJ, Tarvainen MP, Jelinek HF (2013) Using Rényi entropy to detect early cardiac autonomic neuropathy. Proceedings 35th Ann Int Conf IEEE EMBS, Osaka. View
  28. Cornforth D, Tarvainen M, Jelinek HF (2013) Computational intelligence methods for the identification of early cardiac autonomic neuropathy. Proceedings of the 8th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 929 934.
  29. Cornforth D, Tarvainen MP, Jelinek HF (2014) Automated selection of measures of heart rate variability for detection of early cardiac autonomic neuropathy. Proceedings of the International Conference Computing in Cardiology Conference (CinC), pp. 93-96.
  30. Cornforth D, Jelinek HF (2007) Automated classification reveals morphological factors associated with dementia. Applied Soft Computing 8: 182-190. View
  31. Jelinek HF, Wilding C, Tinley P (2006) An innovative multi-disciplinary diabetes complications screening programme in a rural community: A description and preliminary results of the screening. Am J Public Health 12: 14-20. View
  32. Wessel N, Voss A, Malberg H, Ziehmann C, Voss HU, Schirdewan A, Meyerfeldt U, Kurths J (2000) Nonlinear analysis of complex phenomena in cardiological data. Herzschrittmacher Therapie Elektrophysiol 11: 159-173. View
  33. Ernst G (2013) Heart Rate Variability. Springer; London.
  34. Kelarev AV (2003) Graph Algebras and Automata. Marcel Dekker, New York.
  35. Kelarev A, Ryan J, Yearwood J (2009) Cayley graphs as classifiers for data mining: The influence of asymmetries. Discrete Mathematics 309: 5360- 5369. View
  36. Comaniciu D, Meer P (2002) Mean Shift: a robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24: 603-619.
  37. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. Journal of the Royal Statistical Society, Series C 28: 100-108. View
  38. Stein WA et al. (2016) Sage Mathematics Software (Version 6.10). The Sage Development Team. View
  39. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al. (2011) Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12: 2825 2830. View
  40. Scikit-learn (2016) Scikit-learn: Machine Learning in Python. View
  41. Witten IH, Frank E, Hall MA (2011) Data Mining: Practical Machine Learning Tools and Techniques. 3rd Ed. Morgan Kaufmann; New York, Sydney. View
  42. Ward JH Jr. (1963) Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236-244. View
  43. Ester M, Kriegel HP, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96). AAAI Press, pp. 226-231. View
  44. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: an efficient data clustering method for very large databases". Proceedings of the 1996 ACM SIGMOD international conference on management of data (SIGMOD'96). pp. 103-114. View
  45. Fern X, Brodley C (2004) Solving cluster ensemble problems by bipartite graph partitioning. Proceedings of the 21st International Conference on Machine Learning, ICML’04; New York, NY, USA. ACM 69: 36-43. View
  46. Yearwood J, Webb D, Ma L, Vamplew P, Ofoghi B, Kelarev A (2009) Applying clustering and ensemble clustering approaches to phishing profiling. Proceedings of the 8th Australasian Data Mining Conference, AusDM2009, CRPIT 101: 25-34. View