Profile
International Journal of Clinical Pharmacology & Pharmacotherapy Volume 5 (2020), Article ID 5:IJCPP-149, 8 pages
https://doi.org/10.15344/2456-3501/2020/149
Original Article
Using Amodiaquine to Establish Efficient Metabolite Screening and Drugdrug Interaction System by Recombinant Human CYP2C8 Yeast

Qiyue Zhang1,#, He Zhu1,#, Hanhan Li1, Wen Qian2, Xijing Chen1, Toshiyuki Sakaki3 and Changqing Yang*,1

1School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
2Nanjing BRT-Biomed Company, Limited, Jiangning District, Nanjing, China
3Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
Prof. Changqing Yang, Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; E-mail: ycq0315@yahoo.com
#:Qiyue Zhang and He Zhu contributed equally to this work.
03 August 2020; 15 September 2020; 17 September 2020
Zhang Q, Zhu H, Li H, Qian W, Chen X, et al. (2020) Using Amodiaquine to Establish Efficient Metabolite Screening and Drug-drug Interaction System by Recombinant Human CYP2C8 Yeast. Int J Clin Pharmacol Pharmacother 5: 149.doi: https://doi.org/10.15344/2456-3501/2020/149
This work was supported by the fundamental research funds for “Double First-Class”Initiative Innovation Team Project of China Pharmaceutical University (grant No. CPU2018GY29).

References

  1. Yasuda K, Ikushiro S, Kamakura M, Ohta M, Sakaki T, et al. (2010) Metabolism of sesamin by cytochromes P450 in human liver microsomes. Drug Metab Dispos 38: 2117-2123. [CrossRef] [Google Scholar] [PubMed]
  2. Rowland-Yeo K, Rostami-Hodjegan A, Tucker G (2004) Abundance of cytochromes P450 in human liver: A meta-analysis. Br J Clin Pharmacol 57: 687-688. [Google Scholar]
  3. Xue-Qing L, Anders B, Tommy BA, Marianne R, Collen MM, et al. (2002) Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate. J Pharmacol Exp Ther 2: 399-407. [CrossRef] [Google Scholar] [PubMed]
  4. FDA (2016) Drug Development and Drug Interactions: Table of Substrates, Inhibitors and Inducers. [View]
  5. Staffa JA, Chang J, Green L (2002) Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med 346: 539-540. [CrossRef] [Google Scholar] [PubMed]
  6. Walsky RL, Gaman EA, Obach RS (2005) Examination of 209 drugs for inhibition of cytochrome P450 2C8. J Clin Pharmacol 45: 68-78. [CrossRef] [Google Scholar] [PubMed]
  7. Albassam AA, Mohamed ME, Frye RF (2015) Inhibitory effect of six herbal extracts on CYP2C8 enzyme activity in human liver microsomes. Xenobiotica 45: 406-412. [CrossRef] [Google Scholar] [PubMed]
  8. Yeh Hy, Chuang CH, Chen HC, Wan Cj, Chen Tl, et al. (2014) Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWT - Food Science and Technology 55: 329-334. [CrossRef] [Google Scholar]
  9. Silman AJ, Pearson JE (2002) Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 4: 265-272. [CrossRef] [Google Scholar] [PubMed]
  10. Tornio A, Niemi M, Neuvonen PJ, Backman JT (2007) Stereoselective interaction between the CYP2C8 inhibitor gemfibrozil and racemic ibuprofen. Eur J Clin Pharmacol 63: 463-469. [CrossRef] [Google Scholar] [PubMed]
  11. Balsa A, Lojo-Oliveira L, Alperi-López M, García-Manrique M, Ordóñez-Cañizares C, et al. (2019) Prevalence of comorbidities in rheumatoid arthritis and evaluation of their monitoring in clinical practice: the spanish cohort of the COMORA study. Reumatol Clin 15: 102-108. [CrossRef] [Google Scholar] [PubMed]
  12. Van den Hoek J, Roorda LD, Boshuizen HC, Tijhuis GJ, van den Bos GA, et al. (2016) Physical and Mental Functioning in Patients with Established Rheumatoid Arthritis over an 11-year Followup Period: The Role of Specific Comorbidities. J Rheumatol 43: 307-314. [CrossRef] [Google Scholar] [PubMed]
  13. Venkatakrishnan K, Schmider J, Harmatz JS, Ehrenberg BL, von Moltke LL, et al. (2001) Relative contribution of CYP3A to amitriptyline clearance in humans: in vitro and in vivo studies. J Clin Pharmacol 41: 1043-1054. [CrossRef] [Google Scholar] [PubMed]
  14. Lü Xh, HE L (2011) Insulin resistance in patients with rheumatoid arthritis. Journal of Xi’an Jiaotong University 32: 89-92.
  15. Jaakkola T, Laitila J, Neuvonen PJ, Backman JT (2006) Pioglitazone is Metabolised by CYP2C8 and CYP3A4 in vitro: Potential for Interactions with CYP2C8 Inhibitors. Basic Clin Pharmacol Toxicol 99: 44-51. [CrossRef] [Google Scholar] [PubMed]
  16. Bidstrup TB, Bjørnsdottir I, Sidelmann UG, Thomsen MS, Hansen KT, et al. (2003) CYP2C8 and CYP3A4 are the principal enzymes involved in the human in vitro biotransformation of the insulin secretagogue repaglinide. Br J Clin Pharmacol 56: 305-314. [CrossRef] [Google Scholar] [PubMed]
  17. Baldwin SJ, Clarke SE, Chenery RJ (1999) Characterization of the cytochrome P450 enzymes involved in the in vitro metabolism of rosiglitazone. Br J Clin Pharmacol 48: 424-432. [CrossRef] [Google Scholar] [PubMed]
  18. Aviña-Zubieta JA, Choi HK, Sadatsafavi M, Etminan M, Esdaile JM, et al. (2008) Risk of cardiovascular mortality in patients with rheumatoid arthritis: A meta-analysis of observational studies. Arthritis Rheum 59: 1690-1697. [CrossRef] [Google Scholar] [PubMed]
  19. Strandell J, Neil A, Carlin G (2004) An approach to the in vitro evaluation of potential for cytochrome P450 enzyme inhibition from herbals and other natural remedies. Phytomedicine 11: 98-104. [CrossRef] [Google Scholar] [PubMed]
  20. Lim SYM, Binti Azidin AR, Ung YT, Al-Shagga M, Alshawsh MA, et al. (2019) Effect of 95% Ethanol Khat Extract and Cathinone on in vitro Human Recombinant Cytochrome P450 (CYP) 2C9, CYP2D6, and CYP3A4 Activity. Eur J Drug Metab Pharmacokinet 44: 423-431. [CrossRef] [Google Scholar] [PubMed]
  21. Zhuang XM, Deng JT, Li H, Kong WL, Ruan JX, et al. (2011) Metabolism of novel anti-HIV agent 3-cyanomethyl-4-methyl-DCK by human liver microsomes and recombinant CYP enzymes. Acta Pharmacol Sin 32: 1276-1284. [CrossRef] [Google Scholar] [PubMed]
  22. Sjögren E, Svanberg P, Kanebratt KP (2012) Optimized experimental design for the estimation of enzyme kinetic parameters: an experimental evaluation. Drug Metab Dispos 40: 2273-2279. [CrossRef] [Google Scholar] [PubMed]
  23. Yang J, He MM, Niu W, Wrighton SA, Li L, et al. (2012) Metabolic capabilities of cytochrome P450 enzymes in Chinese liver microsomes compared with those in Caucasian liver microsomes. Br J Clin Pharmacol 73: 268-284. [CrossRef] [Google Scholar] [PubMed]
  24. Morten AG, Martinez LJ, Holt N, Sik RH, Reszka K, et al. (1999) Photophysical Studies on Antimalariai Drugs. Photochem Photobiol 69: 282-287. [CrossRef] [Google Scholar]
  25. Mihaly G, Nicholl D, Edwards G, Ward S, Orme M, et al. (1985) High-performance liquid chromatographic analysis of amodiaquine in human plasma. J Chromatogr B Biomed Appl 337: 166‐171. [CrossRef] [Google Scholar] [PubMed]
  26. Unger M, Frank A (2004) Simultaneous determination of the inhibitory potency of herbal extracts on the activity of six major cytochrome P450 enzymes using liquid chromatography/mass spectrometry and automated online extraction. Rapid Commun Mass Spectrom 18: 2273-2281. [CrossRef] [Google Scholar]
  27. Testa B (2007) ADME-Tox Approaches, Comprehensive Medicinal Chemistry, Beijing: Science Press, China.
  28. Majid F, Rahman N, Wahid E, Zainudin A, Nurazwa S, et al. (2018) Evaluation of Herb-Drug Interaction of SynacinnTM and Individual Biomarker through Cytochrome 450 Inhibition Assay. Drug Metabol Lett 12: 62-67. [CrossRef] [Google Scholar] [PubMed]
  29. Kim HJ, Kim IS, Rehman SU, Ha SK, Nakamura K, et al. (2017) Effects of 6-paradol, an unsaturated ketone from gingers, on cytochrome P450-mediated drug metabolism. Bioorg Med Chem Lett 27: 1826-1830. [CrossRef] [Google Scholar] [PubMed]
  30. Mukkavilli R, Gundala S, Yang C, Donthamsetty S, Cantuaria G, et al. (2014) Modulation of Cytochrome P450 Metabolism and Transport across Intestinal Epithelial Barrier by Ginger Biophenolics. PloS one 9: e108386. [CrossRef] [Google Scholar] [PubMed]
  31. Zick SM, Djuric Z, Ruffin MT, Litzinger AJ, Normolle DP, et al. (2008) Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer Epidemiol Biomarkers Prev 17: 1930-1936. [CrossRef] [Google Scholar] [PubMed]
  32. Yu Y, Zick S, Li X, Zou P, Wright B, et al. (2011) Examination of the Pharmacokinetics of Active Ingredients of Ginger in Humans. AAPS J 13: 417. [CrossRef] [Google Scholar] [PubMed]
  33. Li LL, Cui Y, Guo XH, Ma K, Tian P, et al. (2019) Pharmacokinetics and Tissue Distribution of Gingerols and Shogaols from Ginger (Zingiber officinale Rosc.) in Rats by UPLC–Q-Exactive-HRMS. Molecules 24: 512. [CrossRef] [Google Scholar] [PubMed]
  34. Jiang S, Wang N, Mi S (2008) Plasma pharmacokinetics and tissue distribution of [6]-gingerol in rats. Biopharm Drug Dispos 29: 529-537. [CrossRef] [Google Scholar] [PubMed]