Profile
International Journal of Clinical Pharmacology & Pharmacotherapy Volume 3 (2018), Article ID 3:IJCPP-142, 9 pages
https://doi.org/10.15344/2456-3501/2018/142
Review Article
The GABAergic System: An Overview of Physiology, Physiopathology and Therapeutics

Rafael Antonio Vargas

School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
Dr. Rafael Antonio Vargas, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia; E-mail: antonio.vargas@uan.edu.co
01 November 2018; 27 December 2018; 29 December 2018
Vargas RA (2018) The GABAergic System: An Overview of Physiology, Physiopathology and Therapeutics. Int J Clin Pharmacol Pharmacother 3: 142. doi: https://doi.org/10.15344/2456-3501/2018/142

References

  1. Bak LK, Schousboe A, Waagepetersen HS (2006) The glutamate/GABAglutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98: 641-653 [CrossRef] [Google Scholar] [PubMed]
  2. Goto T, Matsuo N, Takahashi T (2001) CSF glutamate/GABA concentrations in pyridoxine-dependent seizures: etiology of pyridoxine-dependent seizures and the mechanisms of pyridoxine action in seizure control. Brain Dev 23: 24-29 [CrossRef] [Google Scholar] [PubMed]
  3. Bowery NG, Brown DA, White RD, Yamini G (1979) [3H] gamma- Aminobutyric acid uptake into neuroglial cells of rat superior cervical sympathetic ganglia. J Physiol 293: 51-74 [CrossRef] [Google Scholar] [PubMed]
  4. Bowery NG, Brown DA (1974) Depolarizing actions of gamma-aminobutyric acid and related compounds on rat superior cervical ganglia in vitro. Br J Pharmacol 50: 205-218 [CrossRef] [Google Scholar] [PubMed]
  5. Walsh JM, Bowery NG, Brown DA, Clark JB (1974) Metabolism of gammaaminobutyric acid (GABA) by peripheral nervous tissue. J Neurochem 22: 1145-1147 [CrossRef] [PubMed]
  6. Alam S, Laughton DL, Walding A, Wolstenholme AJ (2006) Human peripheral blood mononuclear cells express GABAA receptor subunits. Mol Immunol 43: 1432-1442 [CrossRef] [Google Scholar] [PubMed]
  7. Bhat R, Axtell R, Mitra A, Miranda M, Lock C, et al. (2010) Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci USA 107: 2580- 2585 [CrossRef] [Google Scholar] [PubMed]
  8. Dionisio L, José De Rosa M, Bouzat C, Esandi MDC (2011) An intrinsic GABAergic system in human lymphocytes. Neuropharmacology 60: 513- 519 [CrossRef] [Google Scholar] [PubMed]
  9. Gladkevich A, Korf J, Hakobyan VP, Melkonyan KV (2006) The peripheral GABAergic system as a target in endocrine disorders. Auton Neurosci Basic Clin 124: 1-8 [CrossRef] [Google Scholar] [PubMed]
  10. Bowery NG, Hill DR, Hudson AL (1983) Characteristics of GABAB receptor binding sites on rat whole brain synaptic membranes. Br J Pharmacol 78: 191-206 [CrossRef] [Google Scholar] [PubMed]
  11. Bowery NG, Hill DR, Hudson AL (1985) [3H](-)Baclofen: an improved ligand for GABAB sites. Neuropharmacology 24: 207-210 [CrossRef] [Google Scholar] [PubMed]
  12. Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20: 365-383 [CrossRef] [Google Scholar] [PubMed]
  13. Carter CRJ, Kozuska JL, Dunn SMJ (2010) Insights into the structure and pharmacology of GABAA receptors. Future medicinal chemistry 2: 859-875 [CrossRef] [Google Scholar] [PubMed]
  14. D’Hulst C, Atack JR, Kooy RF (2009) The complexity of the GABAA receptor shapes unique pharmacological profiles. Drug Discov Today 14: 866-875 [CrossRef] [Google Scholar] [PubMed]
  15. Chronwall BM, Davis TD, Severidt MW, Wolfe SE, McCarson KE, et al. (2001) Constitutive expression of functional GABA(B) receptors in mIL-tsA58 cells requires both GABA(B(1)) and GABA(B(2)) genes. J Neurochem 77: 1237- 1247 [CrossRef] [Google Scholar] [PubMed]
  16. Kaupmann K, Malitschek B, Schuler V, et al. (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396: 683-687 [CrossRef] [Google Scholar] [PubMed]
  17. Bormann J (2000) The “ABC” of GABA receptors. Trends Pharmacol Sci 21: 16-19 [CrossRef] [Google Scholar] [PubMed]
  18. Bowery NG, Brown DA (1997) The cloning of GABA(B) receptors. Nature 386: 223-224 [CrossRef] [PubMed]
  19. Hill DR, Bowery NG, Hudson AL (1984) Inhibition of GABAB receptor binding by guanyl nucleotides. J Neurochem 42: 652-657 [CrossRef] [Google Scholar] [PubMed]
  20. Qian H, Dowling JE (1993) Novel GABA responses from rod- driven retinal horizontal cells. Nature 361: 162-164 [CrossRef] [Google Scholar] [PubMed]
  21. Cherubini E, Ben-Ari Y (2011) The immature brain needs GABA to be excited and hyper-excited. J Physiol 589: 2655-2656 [CrossRef] [Google Scholar] [PubMed]
  22. Wang DD, Kriegstein AR, Ben-Ari Y (2008) GABA regulates stem cell proliferation before nervous system formation. Epilepsy Curr Am Epilepsy Soc 8: 137-139 [CrossRef] [Google Scholar] [PubMed]
  23. Sigel E, Steinmann ME (2012) Structure, function, and modulation of GABA(A) receptors. J Biol Chem 287: 40224-40231 [CrossRef] [Google Scholar] [PubMed]
  24. Möhler H (2007) Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem 102: 1-12 [CrossRef] [Google Scholar] [PubMed]
  25. Carta MG, Bhat KM, Preti A (2012) GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct BBF 8: 61 [CrossRef] [Google Scholar] [PubMed]
  26. Neto FL, Ferreira-Gomes J, Castro-Lopes JM (2006) Distribution of GABA receptors in the thalamus and their involvement in nociception. Adv Pharmacol 54: 29-51 [CrossRef] [Google Scholar] [PubMed]
  27. Chebib M, Hanrahan JR, Mewett KN, Duke RK, Johnston GAR, et al. (2004) Ionotropic GABA receptors as therapeutic targets for memory and sleep disorders. Annu Rep Med Chem 39: 13-23 [Google Scholar]
  28. Pal D, Mallick BN (2010) GABA-ergic Modulation of Pontine Cholinergic and Noradrenergic Neurons for REM Sleep Generation. GABA and Sleep Springer Basel [Google Scholar]
  29. Reite M (2011) GABA and Sleep: Molecular, Functional and Clinical Aspects. Am J Psychiatry 168: 755 [CrossRef] [Google Scholar]
  30. Hensch TK, Fagiolini M, Mataga N, Stryker MP, Baekkeskov S, et al. (1998) Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282: 1504-1508 [CrossRef] [Google Scholar] [PubMed]
  31. Hensch TK, Stryker MP (2004) Columnar architecture sculpted by GABA circuits in developing cat visual cortex. Science 303: 1678-1681 [CrossRef] [Google Scholar] [PubMed]
  32. Möhler H (2011) The rise of a new GABA pharmacology. Neuropharmacology 60: 1042-1049 [CrossRef] [Google Scholar] [PubMed]
  33. Kah O, Trudeau VL, Sloley BD, Chang JP, Dubourg P, et al. (1992) Influence of GABA on Gonadotrophin Release in the Goldfish. Neuroendocrinology 55: 396-404 [CrossRef] [Google Scholar] [PubMed]
  34. Trudeau VL, Kah O, Chang JP, Sloley BD, Dubourg P, et al. (2000) The inhibitory effects of (gamma)-aminobutyric acid (GABA) on growth hormone secretion in the goldfish are modulated by sex steroids. J Exp Biol 203: 1477-1485 [Google Scholar] [PubMed]
  35. Tian J, Dang H, Chen Z, Guan A, Jin Y, et al. (2013) γ-Aminobutyric acid regulates both the survival and replication of human β-cells. Diabetes 62: 3760-3765 [CrossRef] [Google Scholar] [PubMed]
  36. Jessen KR, Hills JM, Limbrick AR (1988) GABA immunoreactivity and 3H-GABA uptake in mucosal epithelial cells of the rat stomach. Gut 29: 1549-1556 [CrossRef] [Google Scholar] [PubMed]
  37. Piqueras L, Martinez V (2004) Peripheral GABAB agonists stimulate gastric acid secretion in mice. Br J Pharmacol 142: 1038-1048 [CrossRef] [Google Scholar] [PubMed]
  38. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693: 128-133 [CrossRef] [Google Scholar] [PubMed]
  39. Jin Z, Mendu SK, Birnir B (2013) GABA is an effective immunomodulatory molecule. Amino Acids 45: 87-94 [CrossRef] [Google Scholar] [PubMed]
  40. Bowery NG, Hudson AL (1979) Gamma-Aminobutyric acid reduces the evoked release of [3H]-noradrenaline from sympathetic nerve terminals [proceedings]. Br J Pharmacol 66: 108P [Google Scholar] [PubMed]
  41. DeFeudis FV (1982) The link between analgesia and cardiovascular function: roles for GABA and endogenous opioids. Prog Neurobiol 19: 1-17 [CrossRef] [Google Scholar] [PubMed]
  42. Szczepanska-Sadowska E, Cudnoch-Jedrzejewska A, Ufnal M, Zera T (2010) Brain and cardiovascular diseases: common neurogenic background of cardiovascular, metabolic and inflammatory diseases. J Physiol Pharmacol Off J Pol Physiol Soc 61: 509-521 [Google Scholar] [PubMed]
  43. Vargas RA (2017) Effects of GABA, Neural Regulation, and Intrinsic Cardiac Factors on Heart Rate Variability in Zebrafish Larvae. Zebrafish 14: 106-117 [CrossRef] [Google Scholar] [PubMed]
  44. Ito T, Hioki H, Nakamura K, Tanaka Y, Nakade H, et al. (2007) Gammaaminobutyric acid-containing sympathetic preganglionic neurons in rat thoracic spinal cord send their axons to the superior cervical ganglion. J Comp Neurol 502: 113-125 [CrossRef] [PubMed]
  45. Llewellyn-Smith IJ (2002) GABA in the control of sympathetic preganglionic neurons. Clin Exp Pharmacol Physiol 29: 507-513 [CrossRef] [Google Scholar] [PubMed]
  46. Stachowicz K, Brañski P, Kłak K, van der Putten H, Cryan JF, et al. (2008) Selective activation of metabotropic G-protein-coupled glutamate 7 receptor elicits anxiolytic-like effects in mice by modulating GABAergic neurotransmission. Behav Pharmacol 19: 597 [CrossRef] [Google Scholar] [PubMed]
  47. Pehrson AL, Sanchez C (2015) Altered γ-aminobutyric acid neurotransmission in major depressive disorder: a critical review of the supporting evidence and the influence of serotonergic antidepressants. Drug Des Devel Ther 9: 603-624 [CrossRef] [Google Scholar] [PubMed]
  48. Smith KS, Rudolph U (2012) Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABA(A) receptor subtypes. Neuropharmacology 62: 54-62 [CrossRef] [Google Scholar] [PubMed]
  49. Chen JWY, Naylor DE, Wasterlain CG (2007) Advances in the pathophysiology of status epilepticus. Acta Neurol Scand 115: 7-15 [CrossRef] [Google Scholar] [PubMed]
  50. Errington AC, Gibson KM, Crunelli V, Cope DW (2011) Aberrant GABA(A) receptor-mediated inhibition in cortico-thalamic networks of succinic semialdehyde dehydrogenase deficient mice. PloS One 6: e19021 [CrossRef] [Google Scholar] [PubMed]
  51. Pearl PL, Gibson KM, Cortez MA, Wu Y, Carter Snead O 3rd, et al. (2009) Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men. J Inherit Metab Dis 32: 343-352 [CrossRef] [Google Scholar] [PubMed]
  52. Cheong JH (2017) Neurobiological Factors Involved in the Formation of Alcoholism. Yakhak Hoeji 6: 326-334 [CrossRef] [Google Scholar]
  53. Zhu EC, Hu Y, Soundy TJ (2017) Genetics of Alcoholism. South Dakota Medicine 70: 225-227 [Google Scholar]
  54. Paz HR (2005) Modelos fisiopatológicos de la esquizofrenia; de dopamina a glutamato, de glutamato a GABA. Rev Chil Neuro-Psiquiatr 43: 314-328 [CrossRef] [Google Scholar]
  55. Schmidt MJ, Mirnics K (2015) Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 40: 190-206 [CrossRef] [Google Scholar] [PubMed]
  56. Wassef AA, Dott SG, Harris A, Brown A, O'Boyle M, et al. Critical review of GABA-ergic drugs in the treatment of schizophrenia. J Clin Psychopharmacol 19: 222-232 [CrossRef] [Google Scholar] [PubMed]
  57. Wassef A, Baker J, Kochan LD (2003) GABA and schizophrenia: a review of basic science and clinical studies. J Clin Psychopharmacol 23: 601-640 [CrossRef] [Google Scholar] [PubMed]
  58. Benes FM (2015) The GABA system in schizophrenia: cells, molecules and microcircuitry. Schizophr Res 167: 1-3 [CrossRef] [Google Scholar] [PubMed]
  59. Michelsen BK, Petersen JS, Boel E, Møldrup A, Dyrberg T, et al. (1991) Cloning, characterization, and autoimmune recognition of rat islet glutamic acid decarboxylase in insulin-dependent diabetes mellitus. Proc Natl Acad Sci USA 88: 8754-8758 [CrossRef] [Google Scholar]
  60. Tian J, Yong J, Dang H, Kaufman DL (2011) Oral GABA treatment downregulates inflammatory responses in a mouse model of rheumatoid arthritis. Autoimmunity 44: 465-470 [CrossRef] [Google Scholar] [PubMed]
  61. Neethling WML, Hodge AJ (2010) The effect of diazepam on myocardial function and coronary vascular tone after endotoxemia in the isolated rat heart model. Inflamm Res 59: 907-913 [CrossRef] [Google Scholar] [PubMed]
  62. Wheeler DW, Thompson AJ, Corletto F, Reckless J, Loke JC, et al. (2011) Anaesthetic impairment of immune function is mediated via GABA(A) receptors. PloS One 6: e17152 [CrossRef] [Google Scholar] [PubMed]
  63. Gallos G, Townsend E, Yim P, Virag L, Zhang Y, et al. (2013) Airway epithelium is a predominant source of endogenous airway GABA and contributes to relaxation of airway smooth muscle tone. Am J Physiol Lung Cell Mol Physiol 304: 191-197 [CrossRef] [Google Scholar] [PubMed]
  64. Ticku MK, Olsen RW (1978) Interaction of barbiturates with dihydropicrotoxinin binding sites related to the GABA receptor-ionophore system. Life Sciences 22: 1643-1651 [CrossRef] [Google Scholar] [PubMed]
  65. Kerr DI, Ong J (1992) GABA agonists and antagonists. Med Res Rev 6: 593- 636 [CrossRef] [Google Scholar] [PubMed]
  66. Krogsgaard-Larsen P, Christensen AV (1980) GABA Agonists and Antagonists. In Annual Reports in Medicinal Chemistry. Academic Press 15: 41-50 [CrossRef] [Google Scholar]
  67. Valdivia Álvarez I, Abadal Borges G (2005) Epilepsia de difícil control en Pediatría: Nuevas drogas antiepilépticas. Rev Cuba Pediatría [Google Scholar]
  68. Lancel M, Steiger A (1999) Sleep and Its Modulation by Drugs That Affect GABA(A) Receptor Function. Angew Chem Int Ed Engl 38: 2852-2864 [CrossRef] [Google Scholar] [PubMed]
  69. Möhler H (2006) GABA(A) receptor diversity and pharmacology. Cell Tissue Res 326: 505-516 [CrossRef] [Google Scholar] [PubMed]
  70. Möhler H (2012) The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62: 42-53 [CrossRef] [Google Scholar] [PubMed]
  71. Rudolph U, Möhler H (2014) GABAA Receptor Subtypes: Therapeutic Potential in Down Syndrome, Affective Disorders, Schizophrenia, and Autism. Annu Rev Pharmacol Toxicol 54: 483-507 [CrossRef] [Google Scholar] [PubMed]
  72. Engin E, Liu J, Rudolph U (2012) α2-containing GABA(A) receptors: a target for the development of novel treatment strategies for CNS disorders. Pharmacol Ther 136: 142-152 [CrossRef] [Google Scholar] [PubMed]
  73. Rivera Díaz RC, Arcila Lotero MA, Campuzano Escobar D. Baclofeno intratecal para el tratamiento de la espasticidad. Reporte de caso con revisión temática. Rev Colomb Anestesiol 41: 229-235 [CrossRef] [Google Scholar]
  74. Dario A, Tomei G (2004) A benefit-risk assessment of baclofen in severe spinal spasticity. Drug Saf Int J Med Toxicol Drug Exp 27: 799-818 [CrossRef] [Google Scholar] [PubMed]
  75. Enna SJ, McCarson KE (2006) The role of GABA in the mediation and perception of pain. Adv Pharmacol 54: 1-27 [CrossRef] [Google Scholar] [PubMed]
  76. McCarson KE, Enna SJ (2014) GABA Pharmacology: The Search for Analgesics. Neurochem Res 39: 1948-1963 [CrossRef] [Google Scholar] [PubMed]
  77. Franklin KBJ, Abbott FV (1993) Pentobarbital, diazepam, and ethanol abolish the interphase diminution of pain in the formalin test: Evidence for pain modulation by GABAA receptors. Pharmacol Biochem Behav 46: 661-666 [CrossRef] [Google Scholar] [PubMed]
  78. Frye CA, Duncan JE (1994) Progesterone metabolites, effective at the GABAA receptor complex, attenuate pain sensitivity in rats. Brain Res 643: 194-203 [CrossRef] [Google Scholar] [PubMed]
  79. Taira T, Kawamura H, Tanikawa T, Iseki H, Kawabatake H, et al. (1995) A New Approach to Control Central Deafferentation Pain: Spinal Intrathecal Baclofen. Stereotact Funct Neurosurg 65: 101-105 [CrossRef] [Google Scholar] [PubMed]
  80. Bhat R, Axtell R, Mitra A, Miranda M, Lock C, et al. (2010) Inhibitory role for GABA in autoimmune inflammation. Proc Natl Acad Sci 107: 2580-2585 [CrossRef] [Google Scholar] [PubMed]
  81. Solimena M, Folli F, Aparisi R, Pozza G, De Camilli P, et al. (1990) Autoantibodies to GABA-ergic Neurons and Pancreatic Beta Cells in Stiff- Man Syndrome. N Engl J Med 322: 1555-1560 [CrossRef] [Google Scholar] [PubMed]
  82. Peričić D, Manev H, Boranić M, Poljak-Blaži M, Lakić N, et al. (1987) Effect of Diazepam on Brain Neurotransmitters, Plasma Corticosterone, and the Immune System of Stressed Rats. Ann N Y Acad Sci 496: 450-458 [CrossRef] [Google Scholar] [PubMed]
  83. Ferrarese C, Appollonio I, Bianchi G, Frigo M, Marzorati C, et al. (1993) Benzodiazepine receptors and diazepam binding inhibitor: A possible link between stress, anxiety and the immune system. Psychoneuroendocrinology 18: 3-22 [CrossRef] [Google Scholar] [PubMed]
  84. Forkuo GS, Nieman AN, Yuan NY, Kodali R, Yu OB, et al. (2017) Alleviation of multiple asthmatic pathologic features with orally available and subtype selective GABAA receptor modulators. Molecular pharmaceutics 14: 2088- 2098 [CrossRef] [Google Scholar] [PubMed]
  85. Xiang YY, Wang S, Liu M, Hirota JA, Li J, et al. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med 13: 862-867 [CrossRef] [Google Scholar] [PubMed]
  86. Chapman RW, Hey JA, Rizzo CA, Bolser DC (1993) GABAB receptors in the lung. Trends Pharmacol Sci 14: 26-29 [CrossRef] [Google Scholar] [PubMed]
  87. Tohda Y, Ohkawa K, Kubo H, Muraki M, Fukuoka M, et al. (1998) Role of GABA receptors in the bronchial response: studies in sensitized guineapigs. Clin Exp Allergy 28: 772-777 [CrossRef] [Google Scholar] [PubMed]
  88. Bhargava KP, Gupta GP, Gupta MB (1985) Central GABA-ergic mechanism in stress-induced gastric ulceration. Br J Pharmacol 84: 619-623 [CrossRef] [Google Scholar] [PubMed]
  89. Clotet J, Piñero E, Hatem L, Esaa M, Gutierrez J, et al. (2007) Efectividad del tratamiento con agonistas gaba a (Pentobarbital) en el síndrome de intestino irritable con dolor: Año 2005. GEN 61: 277-280
  90. Collares EF, Vinagre AM (2005) Effect of the GABA B agonist baclofen on dipyrone-induced delayed gastric emptying in rats. Braz J Med Biol Res 38: 99-104 [CrossRef] [Google Scholar] [PubMed]
  91. Burokas A, Arboleya S, Moloney RD, Peterson VL, Murphy K, et al. (2017) Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice. Biol Psychiatry 82: 472-487 [CrossRef] [Google Scholar] [PubMed]
  92. Dinan TG, Cryan JF (2017) The microbiome-gut-brain axis in health and disease. Gastroenterol Clin North Am 46: 77-89 [CrossRef] [Google Scholar] [PubMed]
  93. Kelly JR, Clarke G, Cryan JF, Dinan TG (2016) Brain-gut-microbiota axis: challenges for translation in psychiatry. Annals of Epidemiology 26: 366- 372 [CrossRef] [Google Scholar] [PubMed]