Profile
International Journal of Clinical Pharmacology & Pharmacotherapy Volume 2 (2017), Article ID 2:IJCPP-126, 6 pages
https://doi.org/10.15344/2456-3501/2017/126
Original Article
Biopharmaceutical Properties of Tubeimoside-1: A Cytotoxic Amphipathic Cyclic Bisdesmoside

Keisuke Oda, Tomomi Umakoshi, Nobuhiro Mori, Ryoji Kasai, and Teruo Murakami*

Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hirokoshingai, Kure 737-0112, Japan
Prof. Teruo Murakami, Laboratory of Biopharmaceutics and Pharmacokinetics, Faculty of Pharmaceutical Sciences, Hiroshima International University, 5-1-1 Hiro-koshingai, Kure, Hiroshima 737-0112, Japan, Tel: +81-823-73-8994; E-mail: t-muraka@ps.hirokoku-u.ac.jp
12 December 2016; 06 March 2017; 08 March 2017
Oda K, Umakoshi T, Mori N, Kasai R, Murakami T (2017) Biopharmaceutical Properties of Tubeimoside-1: A Cytotoxic Amphipathic Cyclic Bisdesmoside. Int J Clin Pharmacol Pharmacother 2: 126. doi: https://doi.org/10.15344/2456-3501/2017/126
This research was financially supported by MEXT KAKENHI Grant Number JP20136055 in Japan.

References

  1. Kasai R, Miyakoshi M, Matsumoto K, Nie RL, Zhou J, et al. (1986) Tubeimoside I, a new cyclic bisdesmoside from Chinese cucurbitaceous folk medicine "tu bei mu", a tuber of Bolbostemma paniculatum. Chem Pharm Bull (Tokyo) 34: 3974-3977 [CrossRef] [Google Scholar] [PubMed]
  2. Kasai R, Miyakoshi M, Matsumoto K, Nie RL, Zhou J, et al. (1988) Saponins from Bolbostemma Paniculatum: cyclic bisdesmosides, tubeimosides II and III. Phytochemistry 27: 1439-46 [CrossRef] [Google Scholar]
  3. Lin Y, Xie G, Xia J, Su D, Liu J, Et al. (2016) TBMS1 exerts its cytotoxicity in NCI-H460 lung cancer cells through nucleolar stress-induced p53/MDM2- dependent mechanism, a quantitative proteomics study. Biochim Biophys 1864: 204-210 [CrossRef] [Google Scholar] [PubMed]
  4. Yang JB, Khan M, He YY, Yao M, Li YM, et al. (2016) Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro. Acta Pharmacol Sin 37: 950-962 [CrossRef] [Google Scholar] [PubMed]
  5. Miyakoshi M, Kasai R, Nishioka M, Ochiai H, Tanaka O (1990) [Solubilizing effect and inclusion reaction of cyclic bisdesmosides from tubers of Bolbostemma paniculatum]. Yakugaku Zasshi 110: 943-949 [CrossRef] [Google Scholar] [PubMed]
  6. Brewster ME, Vandecruys R, Peeters J, Neeskens P, Verreck G, et al. (2008) Comparative interaction of 2-hydroxypropyl-beta-cyclodextrin and sulfobutylether-beta-cyclodextrin with itraconazole: phase-solubility behavior and stabilization of supersaturated drug solutions. Eur J Pharm Sci 34: 94-103 [CrossRef] [Google Scholar] [PubMed]
  7. Hostetler JS, Hanson LH, Stevens DA (1992) Effect of cyclodextrin on the pharmacology of antifungal oral azoles. Antimicrob Agents Chemother 36: 477-480 [CrossRef] [Google Scholar] [PubMed]
  8. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 [CrossRef] [Google Scholar] [PubMed]
  9. Loftsson T, Hreinsdóttir D, Másson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302: 18-28 [CrossRef] [Google Scholar] [PubMed]
  10. Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329: 1-11 [CrossRef] [Google Scholar] [PubMed]
  11. Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22: 11-23 [CrossRef] [Google Scholar] [PubMed]
  12. Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, et al. (1998b) Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers. Pharmacotherapy 18:295-301 [CrossRef] [Google Scholar] [PubMed]
  13. Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, et al. (1993) Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother 37: 778-784 [CrossRef] [Google Scholar] [PubMed]
  14. Patterson TF, Peters J, Levine SM, Anzueto A, Bryan CL, et al. (1996) Systemic availability of itraconazole in lung transplantation. Antimicrob Agents Chemother 40: 2217-2220 [CrossRef] [Google Scholar] [PubMed]
  15. Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, et al. (1998a) Enhanced bioavailability of itraconazole in hydroxypropyl-betacyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother 42:1862-1865 [CrossRef] [Google Scholar] [PubMed]
  16. Lahner E, Annibale B, Delle Fave G (2009) Systematic review: impaired drug absorption related to the co-administration of antisecretory therapy. Aliment Pharmacol Ther 29: 1219-1229 [CrossRef] [Google Scholar] [PubMed]
  17. Fotaki N, Klein S (2013) Mechanistic understanding of the effect of PPIs and acidic carbonated beverages on the oral absorption of itraconazole based on absorption modeling with appropriate in vitro data. Mol Pharm 10: 4016-4023 [CrossRef] [Google Scholar] [PubMed]
  18. Zimmermann T, Yeates RA, Laufen H, Pfaff G, Wildfeuer A (1994) Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol 46: 147-150 [CrossRef] [Google Scholar] [PubMed]
  19. Yoo SD, Kang E, Jun H, Shin BS, Lee KC, et al. (2000) Absorption, firstpass metabolism, and disposition of itraconazole in rats. Chem Pharm Bull (Tokyo) 48: 798-801 [CrossRef] [Google Scholar] [PubMed]
  20. Shin JH, Choi KY, Kim YC, Lee MG (2004) Dose-dependent pharmacokinetics of itraconazole after intravenous or oral administration to rats: intestinal first-pass effect. Antimicrob Agents Chemother 48: 1756- 1762 [CrossRef] [Google Scholar] [PubMed]
  21. Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62: 1607-1621 [CrossRef] [Google Scholar] [PubMed]
  22. de Repentigny L, Ratelle J, Leclerc JM, Cornu G, Sokal EM, et al. (1998) Repeated-dose pharmacokinetics of an oral solution of itraconazole in infants and children. Antimicrob Agents Chemother 42: 404-408 [CrossRef] [Google Scholar] [PubMed]
  23. Yu LJ, Ma RD, Wang YQ, Nishino H, Takayasu J, et al. (1992) Potent antitumorigenic effect of tubeimoside 1 isolated from the bulb of Bolbostemma paniculatum (Maxim) Franquet. Int J Cancer 50: 635-638 [CrossRef] [Google Scholar] [PubMed]
  24. Yu L, Ma R, Wang Y, Nishino H (1994) Potent anti-tumor activity and low toxicity of tubeimoside 1 isolated from Bolbostemma paniculatum. Planta Med 60: 204-208 [CrossRef] [Google Scholar] [PubMed]
  25. Yu TX, Ma RD, Yu LJ (2001) Structure-activity relationship of tubeimosides in anti-inflammatory, antitumor, and antitumor-promoting effects. Acta Pharmacol Sin 22: 463-468 [Google Scholar] [PubMed]
  26. Hao W, Wang S, Zhou Z (2015) Tubeimoside-1 (TBMS1) inhibits lung cancer cell growth and induces cells apoptosis through activation of MAPKJNK pathway. Int J Clin Exp Pathol 8: 12075-12083 [Google Scholar] [PubMed]