
International Journal of Clinical Pharmacology & Pharmacotherapy Volume 2 (2017), Article ID 2:IJCPP-126, 6 pages
https://doi.org/10.15344/2456-3501/2017/126
https://doi.org/10.15344/2456-3501/2017/126
Original Article
Biopharmaceutical Properties of Tubeimoside-1: A Cytotoxic Amphipathic Cyclic Bisdesmoside
References
- Kasai R, Miyakoshi M, Matsumoto K, Nie RL, Zhou J, et al. (1986) Tubeimoside I, a new cyclic bisdesmoside from Chinese cucurbitaceous folk medicine "tu bei mu", a tuber of Bolbostemma paniculatum. Chem Pharm Bull (Tokyo) 34: 3974-3977 [CrossRef] [Google Scholar] [PubMed]
- Kasai R, Miyakoshi M, Matsumoto K, Nie RL, Zhou J, et al. (1988) Saponins from Bolbostemma Paniculatum: cyclic bisdesmosides, tubeimosides II and III. Phytochemistry 27: 1439-46 [CrossRef] [Google Scholar]
- Lin Y, Xie G, Xia J, Su D, Liu J, Et al. (2016) TBMS1 exerts its cytotoxicity in NCI-H460 lung cancer cells through nucleolar stress-induced p53/MDM2- dependent mechanism, a quantitative proteomics study. Biochim Biophys 1864: 204-210 [CrossRef] [Google Scholar] [PubMed]
- Yang JB, Khan M, He YY, Yao M, Li YM, et al. (2016) Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro. Acta Pharmacol Sin 37: 950-962 [CrossRef] [Google Scholar] [PubMed]
- Miyakoshi M, Kasai R, Nishioka M, Ochiai H, Tanaka O (1990) [Solubilizing effect and inclusion reaction of cyclic bisdesmosides from tubers of Bolbostemma paniculatum]. Yakugaku Zasshi 110: 943-949 [CrossRef] [Google Scholar] [PubMed]
- Brewster ME, Vandecruys R, Peeters J, Neeskens P, Verreck G, et al. (2008) Comparative interaction of 2-hydroxypropyl-beta-cyclodextrin and sulfobutylether-beta-cyclodextrin with itraconazole: phase-solubility behavior and stabilization of supersaturated drug solutions. Eur J Pharm Sci 34: 94-103 [CrossRef] [Google Scholar] [PubMed]
- Hostetler JS, Hanson LH, Stevens DA (1992) Effect of cyclodextrin on the pharmacology of antifungal oral azoles. Antimicrob Agents Chemother 36: 477-480 [CrossRef] [Google Scholar] [PubMed]
- Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254 [CrossRef] [Google Scholar] [PubMed]
- Loftsson T, Hreinsdóttir D, Másson M (2005) Evaluation of cyclodextrin solubilization of drugs. Int J Pharm 302: 18-28 [CrossRef] [Google Scholar] [PubMed]
- Loftsson T, Duchêne D (2007) Cyclodextrins and their pharmaceutical applications. Int J Pharm 329: 1-11 [CrossRef] [Google Scholar] [PubMed]
- Wu CY, Benet LZ (2005) Predicting drug disposition via application of BCS: transport/absorption/ elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 22: 11-23 [CrossRef] [Google Scholar] [PubMed]
- Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, et al. (1998b) Food interaction and steady-state pharmacokinetics of itraconazole oral solution in healthy volunteers. Pharmacotherapy 18:295-301 [CrossRef] [Google Scholar] [PubMed]
- Barone JA, Koh JG, Bierman RH, Colaizzi JL, Swanson KA, et al. (1993) Food interaction and steady-state pharmacokinetics of itraconazole capsules in healthy male volunteers. Antimicrob Agents Chemother 37: 778-784 [CrossRef] [Google Scholar] [PubMed]
- Patterson TF, Peters J, Levine SM, Anzueto A, Bryan CL, et al. (1996) Systemic availability of itraconazole in lung transplantation. Antimicrob Agents Chemother 40: 2217-2220 [CrossRef] [Google Scholar] [PubMed]
- Barone JA, Moskovitz BL, Guarnieri J, Hassell AE, Colaizzi JL, et al. (1998a) Enhanced bioavailability of itraconazole in hydroxypropyl-betacyclodextrin solution versus capsules in healthy volunteers. Antimicrob Agents Chemother 42:1862-1865 [CrossRef] [Google Scholar] [PubMed]
- Lahner E, Annibale B, Delle Fave G (2009) Systematic review: impaired drug absorption related to the co-administration of antisecretory therapy. Aliment Pharmacol Ther 29: 1219-1229 [CrossRef] [Google Scholar] [PubMed]
- Fotaki N, Klein S (2013) Mechanistic understanding of the effect of PPIs and acidic carbonated beverages on the oral absorption of itraconazole based on absorption modeling with appropriate in vitro data. Mol Pharm 10: 4016-4023 [CrossRef] [Google Scholar] [PubMed]
- Zimmermann T, Yeates RA, Laufen H, Pfaff G, Wildfeuer A (1994) Influence of concomitant food intake on the oral absorption of two triazole antifungal agents, itraconazole and fluconazole. Eur J Clin Pharmacol 46: 147-150 [CrossRef] [Google Scholar] [PubMed]
- Yoo SD, Kang E, Jun H, Shin BS, Lee KC, et al. (2000) Absorption, firstpass metabolism, and disposition of itraconazole in rats. Chem Pharm Bull (Tokyo) 48: 798-801 [CrossRef] [Google Scholar] [PubMed]
- Shin JH, Choi KY, Kim YC, Lee MG (2004) Dose-dependent pharmacokinetics of itraconazole after intravenous or oral administration to rats: intestinal first-pass effect. Antimicrob Agents Chemother 48: 1756- 1762 [CrossRef] [Google Scholar] [PubMed]
- Loftsson T, Brewster ME (2010) Pharmaceutical applications of cyclodextrins: basic science and product development. J Pharm Pharmacol 62: 1607-1621 [CrossRef] [Google Scholar] [PubMed]
- de Repentigny L, Ratelle J, Leclerc JM, Cornu G, Sokal EM, et al. (1998) Repeated-dose pharmacokinetics of an oral solution of itraconazole in infants and children. Antimicrob Agents Chemother 42: 404-408 [CrossRef] [Google Scholar] [PubMed]
- Yu LJ, Ma RD, Wang YQ, Nishino H, Takayasu J, et al. (1992) Potent antitumorigenic effect of tubeimoside 1 isolated from the bulb of Bolbostemma paniculatum (Maxim) Franquet. Int J Cancer 50: 635-638 [CrossRef] [Google Scholar] [PubMed]
- Yu L, Ma R, Wang Y, Nishino H (1994) Potent anti-tumor activity and low toxicity of tubeimoside 1 isolated from Bolbostemma paniculatum. Planta Med 60: 204-208 [CrossRef] [Google Scholar] [PubMed]
- Yu TX, Ma RD, Yu LJ (2001) Structure-activity relationship of tubeimosides in anti-inflammatory, antitumor, and antitumor-promoting effects. Acta Pharmacol Sin 22: 463-468 [Google Scholar] [PubMed]
- Hao W, Wang S, Zhou Z (2015) Tubeimoside-1 (TBMS1) inhibits lung cancer cell growth and induces cells apoptosis through activation of MAPKJNK pathway. Int J Clin Exp Pathol 8: 12075-12083 [Google Scholar] [PubMed]