Profile
International Journal of Clinical Pharmacology & Pharmacotherapy Volume 1 (2016), Article ID 1:IJCPP-122, 5 pages
https://doi.org/10.15344/2456-3501/2016/122
Commentary
Critical Factors Involved in the Determination of the Optimal Concentration of Ophthalmic Anti-infective Compounded Drugs

Anxo Fernández-Ferreiro1,3,4*, Miguel González-Barcia 3,4, Gil-Martínez M5,6, Blanco-Méndez J1,2, Luaces-Rodriguez A1, Victoria Díaz Tome1, Lamas MJ 3,4 and Otero-Espinar FJ1,2

1Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Spain
2Industrial Pharmacy Institute, University of Santiago de Compostela (USC), Spain
3Pharmacy Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Santiago de Compostela, Spain
4Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS-ISCIII), Spain
5Ophthalmology Department, Xerencia de Xestión Integrada de Santiago de Compostela, SERGAS, Santiago de Compostela, Spain
6Institute Ophthalmology Gomez Ulla. Santiago de Compostela, Spain
Prof. Anxo Fernández-Ferreiro, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), Spain; E-mail: francisco.otero@usc.es
10 July 2016; 26 December 2016; 28 December 2016
Fernández-Ferreiro A, González-Barcia M, Gil-Martínez M, Blanco- Méndez J, Luaces-Rodriguez A, et al. (2016) Critical Factors Involved in the Determination of the Optimal Concentration of Ophthalmic Anti-infective Compounded Drugs. Int J Clin Pharmacol Pharmacother 1: 122. doi: https://doi.org/10.15344/2456-3501/2016/122

References

  1. Ferreiro AF, Barcia MG, Martínez MG, Méndez JB, Espinar FJO, et al. (2016) Current use of Antifungal Eye Drops and How to Improve Therapeutic Aspects in Keratomycosis. Fungal Genom Biol 6:130 [CrossRef] [Google Scholar]
  2. Fernández-Ferreiro A, Gonzalez-Barcia M, Gil-Martinez M, Alba Dominguez J, Otero Espinar FJ (2014) Use of fortified eye drops on eye infections. Atencion Farmaceutica 16: 216-219
  3. Ayaki M, Iwasawa A, Niwano Y (2012) In vitro assessment of the cytotoxicity of six topical antibiotics to four cultured ocular surface cell lines. Biocontrol Sci 17: 93-99 [CrossRef] [Google Scholar] [PubMed]
  4. Short BG (2008) Safety evaluation of ocular drug delivery formulations: techniques and practical considerations. Toxicol Pathol 36: 49-62 [CrossRef] [Google Scholar] [PubMed]
  5. Sleath B, Blalock S, Covert D, Stone JL, Skinner AC, et al. (2011) The relationship between glaucoma medication adherence, eye drop technique, and visual field defect severity. Ophthalmology 118: 2398-2402 [CrossRef] [Google Scholar] [PubMed]
  6. Fernández-Ferreiro A, Santiago-Varela M, Gil-Martínez M, Parada TG-C, Pardo M, et al. (2015) Ocular safety comparison of non-steroidal antiinflammatory eye drops used in pseudophakic cystoid macular edema prevention. Int J Pharm 495: 680-691 [CrossRef] [Google Scholar] [PubMed]
  7. Dehghani A, Fazel F, Akhlaghi MR, Ghanbari H, Ilanloo MR, et al. () Fortified Cefazolin-Gentamicin versus Fortified Vancomycin-Ceftazidime Drops for Treatment of Bacterial Corneal Ulcers. J Ophthalmol 13: 381- 386 [Google Scholar]
  8. Pawar P, Kashyap H, Malhotra S, Sindhu R (2013) Hp-ß-CD-Voriconazole In Situ Gelling System for Ocular Drug Delivery: In Vitro, Stability, and Antifungal Activities Assessment. BioMed Res Int 2013: 341218 [CrossRef] [Google Scholar] [PubMed]
  9. Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65: 1148-1171 [CrossRef] [Google Scholar] [PubMed]
  10. Fernández-Ferreiro A, González Barcia M, Gil-Martínez M, Vieites-Prado A, Lema I, et al. (2015) In vitro and in vivo ocular safety and eye surface permanence determination by direct and Magnetic Resonance Imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur J Pharm Biopharm 94: 342-351 [CrossRef] [Google Scholar] [PubMed]
  11. Gupta H, Velpandian T, Jain S (2010) Ion- and pH-activated novel in-situ gel system for sustained ocular drug delivery. J Drug Target 18: 499-505 [CrossRef] [Google Scholar] [PubMed]
  12. Fernández Farrés I, Norton IT (2014) Formation kinetics and rheology of alginate fluid gels produced by in-situ calcium release. Food Hydrocoll 40: 76-84 [CrossRef] [Google Scholar]
  13. Fernández-Ferreiro A, Fernández Bargiela N, Varela MS, Martínez MG, Pardo M, et al. (2014) Cyclodextrin-polysaccharide-based, in situ-gelled system for ocular antifungal delivery. Beilstein J Org Chem10: 2903-2911 [CrossRef] [Google Scholar] [PubMed]
  14. Otero Espinar FJ, Torres-Labandeira JJ, Alvarez-Lorenzo C, Blanco- Méndez J (2010) Cyclodextrins in drug delivery systems. J Drug Del Sci Tech 20: 289-301 [CrossRef] [Google Scholar]
  15. Kahlmeter G, Brown DFJ, Goldstein FW, MacGowan AP, Mouton JW, et al. European Committee on Antimicrobial Susceptibility Testing (EUCAST) Technical Notes on antimicrobial susceptibility testing. Clin Microbiol Infect 12: 501-503 [CrossRef] [Google Scholar] [PubMed]
  16. Leclercq R, Cantón R, Brown DF, Giske CG, Heisig P, et al. (2013) EUCAST expert rules in antimicrobial susceptibility testing. Clin Microbiol Infect 19: 141-160 [CrossRef] [Google Scholar] [PubMed]
  17. Levison ME, Levison JH (2009) Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am 23: 791-815, vii [CrossRef] [Google Scholar] [PubMed]
  18. Guideline on the evaluation of medicinal products indicated for treatment of bacterial infections. 15 December 2011 CPMP/EWP/558/95 rev 2 Committee for Medicinal Products for Human Use (CHMP)
  19. Drusano GL, Goldstein FW (1996) Relevance of the Alexander Project: pharmacodynamic considerations. J Antimicrob Chemother 38 Suppl A: 141-154 [CrossRef] [Google Scholar] [PubMed]
  20. Moore RD, Lietman PS, Smith CR (1987) Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis 155: 93-99 [CrossRef] [Google Scholar] [PubMed]
  21. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, et al. (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37: 1073-1081 [CrossRef] [Google Scholar] [PubMed]
  22. Suárez C, Gudiol F (2009) [Beta-lactam antibiotics]. Enferm Infecc Microbiol Clin 27: 116-129 [CrossRef] [PubMed]
  23. Craig WA, Vogelman B (1984) Changing patterns of hospital infections: implications for therapy. Changing concepts and new applications of antibiotic pharmacokinetics. Am J Med 77: 24-28 [CrossRef] [Google Scholar] [PubMed]
  24. Craig WA (1998) Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 26: 1-10 [CrossRef] [Google Scholar] [PubMed]
  25. Lux A, Maier S, Dinslage S, Süverkrüp R, Diestelhorst M (2003) A comparative bioavailability study of three conventional eye drops versus a single lyophilisate. Br J Ophthalmol 87: 436-440 [CrossRef] [Google Scholar] [PubMed]
  26. Eter N, Göbbels M (2002) A new technique for tear film fluorophotometry. Br J Ophthalmol 86: 616-619 [CrossRef] [Google Scholar] [PubMed]
  27. Fernandez-Ferreiro A, Santiago-Varela M, Pardo M, Barcia MG, Pineiro-Ces A, et al. (2014) Effect of diferent fortified antibiotic eye drops on human eye drops on human and bovine corneal cells in vitro. Invest Ophthalmol Vis Sci 55: 4891-4891 [Google Scholar]
  28. Yuan X, Hua X, Wilhelmus KR (2010) The corneal expression of antimicrobial peptides during experimental fungal keratitis. Curr Eye Res 35: 872-879 [CrossRef] [Google Scholar] [PubMed]
  29. Aslan Bayhan S, Bayhan HA, Muhafız E, Bekdemir Ş, Gürdal C (2015) Effects of osmoprotective eye drops on tear osmolarity in contact lens wearers. Can J Ophthalmol 50: 283-289 [CrossRef] [Google Scholar] [PubMed]
  30. Ficha técnica OFTACILOX 3 mg/ml colirio en solución [Internet]
  31. Seitz B, Hayashi S, Wee WR, LaBree L, McDonnell PJ (1996) In vitro effects of aminoglycosides and fluoroquinolones on keratocytes. Invest Ophthalmol Vis Sci 37: 656-665 [Google Scholar] [PubMed]
  32. Gonzalez Barcia M (2011) Formulación Magistral en Oftalmología. In: Aspectos prácticos de la farmacotécnia en un servicio de farmacia [Internet]. Galpagar: Master Line Prodigio
  33. Dua HS, Faraj LA, Said DG, Gray T, Lowe J (2013) Human corneal anatomy redefined: a novel pre-Descemet's layer (Dua's layer). Ophthalmology 120: 1778-1785 [CrossRef] [Google Scholar] [PubMed]
  34. Pérez-Santonja JJ, Hervás-Hernandis JM (2006) Queratitis infecciosas: fundamentos, técnicas diagnósticas y tratamiento. Ergon, 278 p [Google Scholar]
  35. Garg A, Sheppard JD, Donnenfeld ED, Friedlaender MH (2007) Clinical Applications of Antibiotics and Anti-Inflammatory Drugs in Ophthalmology, Lippincott Williams & Wilkins, 598 p
  36. Keay LJ, Gower EW, Iovieno A, Oechsler RA, Alfonso EC, et al. (2011) Clinical and microbiological characteristics of fungal keratitis in the United States, 2001-2007: a multicenter study. Ophthalmology 118: 920-926 [CrossRef] [Google Scholar] [PubMed]
  37. Quimioterapia SE de (2006) Antimicrobianos en medicina. Sociedad Española de Quimioterapia; 843 p
  38. Sun CQ, Lalitha P, Prajna NV, Karpagam R, Geetha M, et al. (2014) Association between in vitro susceptibility to natamycin and voriconazole and clinical outcomes in fungal keratitis. Ophthalmology 121: 1495-1500 [CrossRef] [Google Scholar] [PubMed]
  39. Benson H (1974) Permeability of the cornea to topically applied drugs. Arch Ophthalmol 91: 313-327 [CrossRef] [Google Scholar] [PubMed]
  40. O'Day DM, Head WS, Robinson RD, Clanton JA (1986) Corneal penetration of topical amphotericin B and natamycin. Curr Eye Res 5: 877-882 [CrossRef] [Google Scholar] [PubMed]
  41. Behrens-Baumann W, Uter W, Ansorg R (1987) [Experimental studies of local therapy of Candida keratomycosis with amphotericin B]. Klin Monbl Augenheilkd 191: 125-128 [CrossRef] [PubMed]
  42. Prajna NV, Krishnan T, Mascarenhas J, Rajaraman R, Prajna L, et al. (2013) The mycotic ulcer treatment trial: a randomized trial comparing natamycin vs voriconazole. JAMA Ophthalmol 131: 422-429 [CrossRef] [Google Scholar] [PubMed]
  43. Wang B, Wang L, Chen P, Zhang J (2012) Pharmacokinetics of topically applied econazole nitrate nanoparticles in rabbit eye. Chin J Exp Ophthalmol 30: 677-680 [Google Scholar]
  44. Abbasoğlu OE, Hoşal BM, Sener B, Erdemoğlu N, Gürsel E (2001) Penetration of topical fluconazole into human aqueous humor. Exp Eye Res 72: 147-151 [CrossRef] [Google Scholar] [PubMed]
  45. Hariprasad SM, Mieler WF, Lin TK, Sponsel WE, Graybill JR (2008) Voriconazole in the treatment of fungal eye infections: a review of current literature. Br J Ophthalmol 92: 871-878 [CrossRef] [Google Scholar] [PubMed]
  46. Lalitha P, Shapiro BL, Srinivasan M, Prajna NV, Acharya NR, et al. (2007) Antimicrobial susceptibility of Fusarium, Aspergillus, and other filamentous fungi isolated from keratitis. Arch Ophthalmol 125: 789-793 [CrossRef] [Google Scholar] [PubMed]
  47. Qiu WY, Yao YF, Zhu YF, Zhang YM, Zhou P, et al. (2005) Fungal spectrum identified by a new slide culture and in vitro drug susceptibility using Etest in fungal keratitis. Curr Eye Res 30: 1113-1120 [CrossRef] [Google Scholar] [PubMed]
  48. Lalitha P, Sun CQ2, Prajna NV1, Karpagam R1, Geetha M1, et al. (2014) In vitro susceptibility of filamntous fungal isolates from a corneal ulcer clinical trial. Am J Ophthalmol 157: 318-326 [CrossRef] [Google Scholar] [PubMed]
  49. Xu Y, Pang G, Gao C, Zhao D, Zhou L, et al. (2009) In vitro comparison of the efficacies of natamycin and silver nitrate against ocular fungi. Antimicrob Agents Chemother 53: 1636-1638 [CrossRef] [Google Scholar] [PubMed]
  50. Knowledge Base The antimicrobial Index [Internet]. Knowledge Base The antimicrobial Index
  51. Galarreta DJ, Tuft SJ, Ramsay A, Dart JK (2007) Fungal keratitis in London: microbiological and clinical evaluation. Cornea 26: 1082-1086 [CrossRef] [Google Scholar] [PubMed]
  52. Tzatzarakis MN, Tsatsakis AM, Charvalos E, Vakalounakis D (2001) Comparison of in vitro activities of amphotericin, clotrimazole, econazole, miconazole, and nystatin against Fusarium oxysporum. J Environ Sci Health B 36: 331-340 [CrossRef] [Google Scholar] [PubMed]
  53. Guinet R, Mazoyer MA (1984) [In vitro comparative study of the sensitivity of Aspergillus to antifungal agents]. Pathol Biol (Paris) 32: 654-657 [Google Scholar] [PubMed]
  54. Jit Sud I, Feingold DS (1975) Detection of agents that alter the bacterial cell surface. Antimicrob Agents Chemother 8: 34-37 [CrossRef] [Google Scholar] [PubMed]
  55. Ficha Técnica EXOCIN 3 mg/ml colirio en solución [Internet]
  56. Wong CA, Galvis V, Tello A, Villareal D, Rey JJ (2012) [In vitro antibiotic susceptibility to fluoroquinolones]. Arch Soc Esp Oftalmol 87: 72-78 [CrossRef] [Google Scholar] [PubMed]
  57. Bremond-Gignac D, Bremond-Gignac F, Milazzo S (2011) A European Perspective on Topical Ophthalmic Antibiotics: Current and Evolving Options. Ophthalmol Eye Dis 3: 29-43 [CrossRef] [Google Scholar] [PubMed]
  58. Felton T, Troke PF, Hope WW (2014) Tissue penetration of antifungal agents. Clin Microbiol Rev 27: 68-88 [CrossRef] [Google Scholar] [PubMed]
  59. Lorian V (2005) Antibiotics in Laboratory Medicine, Lippincott Williams & Wilkins, 922 p