Profile
International Journal of Clinical & Medical Microbiology Volume 3 (2018), Article ID 3:IJCMM-136, 4 pages
https://doi.org/10.15344/2456-4028/2018/136
Research Article
Whole Genome Sequence Analysis of CTX-M-55 Producing Escherichia coli Isolates from Clinical Patients in Japan

Yuya Hasunuma1,*, Moe Yokemura1, Nozomi Hiyoshi1, Takashi Ishimatsu2, Takuya Tsunoda2, Satoshi Kugawa2 and Yoshikazu Tokuoka1

1Graduate School of Engineering, Toin University of Yokohama, Kurogane-cho, Aoba-ku, Yokohama, Kanagawa, Japan
2Health Sciences Research Institute, Toin University of Yokohama, Godo-cho, Hodogaya-ku, Yokohama, Kanagawa, Japan
Dr. Yuya Hasunuma, Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba-ku, Yokohama, Kanagawa 225-8503, Japan, Tel: +81-45-972-5881; E-mail: hyuya@toin.ac.jp
06 November 2018; 10 December 2018; 12 December 2018
Hasunuma Y, Yokemura M, Hiyoshi N, Ishimatsu T, Tsunoda T, et al. (2018) Whole Genome Sequence Analysis of CTX-M-55 Producing Escherichia coli Isolates from Clinical Patients in Japan. Int J Clin Med Microbiol 3: 136. doi: https://doi.org/10.15344/2456-4028/2018/136

References

  1. Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303: 298-304 [CrossRef] [Google Scholar] [PubMed]
  2. Marchaim D, Chopra T, Bhargava A, Bogan C, Dhar S, et al. (2012) Recent exposure to antimicrobials and carbapenem-resistant Enterobacteriaceae: the role of antimicrobial stewardship. Infect Control Hosp Epidemiol 33: 817-830 [CrossRef] [Google Scholar] [PubMed]
  3. Bonnet R, Dutour C, Sampaio JL, Chanal C, Sirot D, et al. (2001) Novel cefotaximase (CTX-M-16) with increased catalytic efficiency due to substitution Asp-240-->Gly. Antimicrob Agents Chemother 45: 2269-2275 [CrossRef] [Google Scholar] [PubMed]
  4. Bonnet R, Recule C, Baraduc R, Chanal C, Sirot D, et al. (2003) Effect of D240G substitution in a novel ESBL CTX-M-27. J Antimicrob Chemother 52: 29-35 [CrossRef] [Google Scholar] [PubMed]
  5. Kiratisin P, Apisarnthanarak A, Saifon P, Laesripa C, Kitphati R, et al. (2007) The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum beta-lactamase, CTX-M-55, in both community-onset and hospitalacquired infections in Thailand. Diagn Microbiol Infect Dis 58: 349-355 [CrossRef] [Google Scholar] [PubMed]
  6. Vincent C, Boerlin P, Daignault D, Dozois CM, Dutil L, et al. (2010) Food reservoir for Escherichia coli causing urinary tract infections. Emerg Infect Dis 16: 88-95 [CrossRef] [Google Scholar] [PubMed]
  7. Chong Y, Shimoda S, Yakushiji H, Ito Y, Miyamoto T, et al. (2013) Community spread of extended-spectrum β-lactamase-producing Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis: a long-term study in Japan. J Med Microbiol 62: 1038-1043 [CrossRef] [Google Scholar] [PubMed]
  8. Monstein HJ, Ostholm-Balkhed A, Nilsson MV, Nilsson M, Dornbusch K, et al. (2007) Multiplex PCR amplification assay for the detection of blaSHV, blaTEM and blaCTX-M genes in Enterobacteriaceae. APMIS 115: 1400-1408 [CrossRef] [Google Scholar] [PubMed]
  9. Woodford N, Fagan EJ, Ellington MJ (2006) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J Antimicrob Chemother 57: 154-155 [CrossRef] [Google Scholar] [PubMed]
  10. Clinical and Laboratory Standards Institute (2011) Performance standards for antimicrobial susceptibility testing: 21st informational supplement. M100-S21. CLSI, Wayne, Pa
  11. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, et al. (2012) Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67: 2640-2644 [CrossRef] [Google Scholar] [PubMed]
  12. Yano H, Uemura M, Endo S, Kanamori H, Inomata S, et al. (2013) Molecular characteristics of extended-spectrum β-lactamases in clinical isolates from Escherichia coli at a Japanese tertiary hospital. PLoS One 8: e64359 [CrossRef] [Google Scholar] [PubMed]
  13. Zheng H, Zeng Z, Chen S, Liu Y, Yao Q, et al. (2012) Prevalence and characterization of CTX-M β-lactamases amongst Escherichia coli isolates from healthy food animals in China. Int J Antimicrob Agents 39: 305-310 [CrossRef] [Google Scholar] [PubMed]
  14. Lv L, Partridge SR, He L, Zeng Z, He D, et al. (2013) Genetic characterization of IncI2 plasmids carrying blaCTX-M-55 spreading in both pets and food animals in China. Antimicrob Agents Chemother 57: 2824-2827 [CrossRef] [Google Scholar] [PubMed]
  15. Xia S, Fan X, Huang Z, Xia L, Xiao M, et al. (2014) Dominance of CTX-M-type extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from patients with community-onset and hospital-onset infection in China. PLoS One 9: e100707 [CrossRef] [Google Scholar] [PubMed]
  16. Kameyama M, Chuma T, Yabata J, Tominaga K, Iwata H, et al. (2013) Prevalence and epidemiological relationship of CMY-2 AmpC β-lactamase and CTX-M extended-spectrum β-lactamase-producing Escherichia coli isolates from broiler farms in Japan. J Vet Med Sci 75: 1009-1015 [CrossRef] [Google Scholar] [PubMed]
  17. Zhang J, Zheng B, Zhao L, Wei Z, Ji J, et al. (2014) Nationwide high prevalence of CTX-M and an increase of CTX-M-55 in Escherichia coli isolated from patients with community-onset infections in Chinese county hospitals. BMC Infect Dis 3:14: 659 [CrossRef] [Google Scholar] [PubMed]
  18. Wang S, Zhao SY, Xiao SZ, Gu FF, Liu QZ, et al. (2016) Antimicrobial Resistance and Molecular Epidemiology of Escherichia coli Causing Bloodstream Infections in Three Hospitals in Shanghai, China. PLoS One 11: e0147740 [CrossRef] [Google Scholar] [PubMed]
  19. Wu J, Lan F, Lu Y, He Q, Li B (2017) Molecular Characteristics of ST1193 Clone among Phylogenetic Group B2 Non-ST131 Fluoroquinolone- Resistant Escherichia coli. Front Microbiol 8: 2294 [CrossRef] [Google Scholar] [PubMed]
  20. Johnson TJ, Shepard SM, Rivet B, Danzeisen JL, Carattoli A, et al. (2011) Comparative genomics and phylogeny of the IncI1 plasmids: a common plasmid type among porcine enterotoxigenic Escherichia coli. Plasmid 66: 144-1451 [CrossRef] [Google Scholar] [PubMed]
  21. YJ Kim, JS Moon, DH Oh, JW Chon, BR Song, et al. (2017) Genotypic characterization of ESBL-producing E. coli from imported meat in South Korea. Food Res Intern in press 107: 158-164 [CrossRef] [Google Scholar]
  22. Sun J, Li XP, Yang RS, Fang LX, Huo W, et al. (2016) Complete Nucleotide Sequence of an IncI2 Plasmid Coharboring blaCTX-M-55 and mcr-1. Antimicrob Agents Chemother 60: 5014-5017 [CrossRef] [Google Scholar] [PubMed]
  23. Zheng H, Zeng Z, Chen S, Liu Y, Yao Q, et al. (2012) Prevalence and characterisation of CTX-M β-lactamases amongst Escherichia coli isolates from healthy food animals in China. Int J Antimicrob Agents 4: 305-310 [CrossRef] [Google Scholar] [PubMed]
  24. Meunier D, Jouy E, Lazizzera C, Doublet B, Kobisch M, et al. (2010) Plasmid-borne florfenicol and ceftiofur resistance encoded by the floR and blaCMY-2 genes in Escherichia coli isolates from diseased cattle in France. J Med Microbiol 59: 467-471 [CrossRef] [Google Scholar] [PubMed]
  25. McGann P, Snesrud E, Maybank R, Corey B, Ong AC, et al. (2016) Escherichia coli Harboring mcr-1 and blaCTX-M on a Novel IncF Plasmid: First Report of mcr-1 in the United States. Antimicrob Agents Chemother 60: 4420-4421 [CrossRef] [Google Scholar] [PubMed]
  26. Hou J, Yang X, Zeng Z, Lv L, Yang T, et al. (2013) Detection of the plasmidencoded fosfomycin resistance gene fosA3 in Escherichia coli of foodanimal origin. J Antimicrob Chemother 4: 766-770 [CrossRef] [Google Scholar] [PubMed]
  27. Wang XM, Dong Z, Schwarz S, Zhu Y, Hua X, et al. (2017) Plasmids of Diverse Inc Groups Disseminate the Fosfomycin Resistance Gene fosA3 among Escherichia coli Isolates from Pigs, Chickens, and Dairy Cows in Northeast China. Antimicrob Agents Chemother 9: e00859-17 [CrossRef] [Google Scholar] [PubMed]
  28. Rodríguez-Baño J, Alcalá JC, Cisneros JM, Grill F, Oliver A, et al. (2008) Community infections caused by extended-spectrum beta-lactamaseproducing Escherichia coli. Arch Intern Med 168: 1897-1902 [CrossRef] [Google Scholar] [PubMed]