Profile
International Journal of Clinical & Medical Microbiology Volume 3 (2018), Article ID 3:IJCMM-129, 4 pages
https://doi.org/10.15344/2456-4028/2018/129
Commentary
Applications of MALDI-TOF Mass Spectrometry for the Routine Identification of Microorganisms

Rodríguez-Sánchez Belén1,2,3

1Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Spain
2Instituto de Investigación Sanitaria Gregorio Marañón, Spain
3CIBER de Enfermedades Respiratorias, Madrid, Spain
Dr. Belén Rodríguez-Sánchez, Servicio de Microbiología-Enfermedades Infecciosas, Hospital General Universitario Gregorio Marañón, Madrid, Spain; E-mail: mbelen.rodriguez@iisgm.com
16 December 2017; 08 February 2018; 10 February 2018
Rodríguez-Sánchez B (2018) Applications of MALDI-TOF Mass Spectrometry for the Routine Identification of Microorganisms. Int J Clin Med Microbiol 3: 129. doi: https://doi.org/10.15344/2456-4028/2018/129

References

  1. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier PE, et al. (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49: 543-551 [CrossRef] [Google Scholar] [PubMed]
  2. Becker PT, de Bel A, Martiny D, Ranque S, Piarroux R, et al. (2014) Identification of filamentous fungi isolates by MALDI-TOF mass spectrometry: clinical evaluation of an extended reference spectra library. Med Mycol 52: 826-834 [CrossRef] [Google Scholar] [PubMed]
  3. Rodríguez-Sánchez B, Marín M, Sánchez-Carrillo C, Cercenado E, Ruiz A, et al. (2014) Improvement of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of difficult-to-identify bacteria and its impact in the workflow of a clinical microbiology laboratory. DiagnMicrobiol Infect Dis 79: 1-6 [CrossRef] [Google Scholar] [PubMed]
  4. Turhan O, Ozhak-Baysan B, Zaragoza O, Er H, Sarıtas ZE, et al. (2017) Evaluation of MALDI-TOF-MS for the Identification of Yeast Isolates Causing Bloodstream Infection. Clin Lab 63: 699-703 [CrossRef] [Google Scholar] [PubMed]
  5. Veloo ACM, Jean-Pierre H, Justesen US, Morris T, Urban E, et al. (2017) A multi-center ring trial for the identification of anaerobic bacteria using MALDI-TOF MS. Anaerobe 48: 94-97 [CrossRef] [Google Scholar] [PubMed]
  6. Sparbier K, Schubert S, Weller U, Boogen C, Kostrzewa M, et al. (2012) Matrix-assisted laser desorption ionization-time of flight mass spectrometrybased functional assay for rapid detection of resistance against β-lactam antibiotics. J ClinMicrobiol 50: 927-937 [CrossRef] [Google Scholar] [PubMed]
  7. Hrabák J (2015) Detection of carbapenemases using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) meropenem hydrolysis assay. Methods Mol Biol 1237: 91-96 [CrossRef] [Google Scholar] [PubMed]
  8. Jung JS, Hamacher C, Gross B, Sparbier K, Lange C, et al. (2016) Evaluation of a Semiquantitative Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry Method for Rapid Antimicrobial Susceptibility Testing of Positive Blood Cultures. J ClinMicrobiol 54: 2820-2824 [CrossRef] [Google Scholar] [PubMed]
  9. Ceyssens PJ, Soetaert K, Timke M, Bossche AV, Sparbier K, et al. (2017) Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry for Combined Species Identification and Drug Sensitivity Testing in Mycobacteria. J ClinMicrobiol 55: 624-634 [CrossRef] [Google Scholar]
  10. Oviaño M, Ramírez CL, Barbeyto LP, Bou G (2017) Rapid direct detection of carbapenemase-producing Enterobacteriaceae in clinical urine samples by MALDI-TOF MS analysis. J AntimicrobChemother 72: 1350-1354 [CrossRef] [Google Scholar] [PubMed]
  11. Egli A, Tschudin-Sutter S, Oberle M, Goldenberger D, Frei R, et al. (2015) Matrix-assisted laser desorption/ionization time of flight mass-spectrometry (MALDI-TOF MS) based typing of extended-spectrum β-lactamase producing E. coli--a novel tool for real-time outbreak investigation.PLoS One 10: e0120624 [CrossRef] [Google Scholar] [PubMed]
  12. Oberle M, Wohlwend N, Jonas D, Maurer FP, Jost G, et al. (2016) The Technical and Biological Reproducibility of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) Based Typing: Employment of Bioinformatics in a Multicenter Study. PLoS One 11: e0164260 [CrossRef] [Google Scholar] [PubMed]
  13. Bizzini A, Durussel C, Bille J, Greub G, Prod'hom G, et al. (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J ClinMicrobiol 48: 1549-1554 [CrossRef] [Google Scholar] [PubMed]
  14. Rodríguez-Sánchez B, Alcalá L, Marín M, Ruiz A, Alonso E, et al. (2016) Evaluation of MALDI-TOF MS (Matrix-Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry) for routine identification of anaerobic bacteria. Anaerobe 42: 101-107 [CrossRef] [Google Scholar] [PubMed]
  15. Veloo AC, de Vries ED, Jean-Pierre H, Justesen US, Morris T, et al. (2016) The optimization and validation of the Biotyper MALDI-TOF MS database for the identification of Gram-positive anaerobic cocci. ClinMicrobiol Infect 22: 793-798 [CrossRef] [Google Scholar] [PubMed]
  16. Intra J, Sala MR, Falbo R, Cappellini F, Brambilla P, et al. (2016) Reducing time to identification of aerobic bacteria and fastidious micro-organisms in positive blood cultures. Lett ApplMicrobiol 63: 400-405 [CrossRef] [Google Scholar] [PubMed]
  17. Christner M, Rohde H, Wolters M, Sobottka I, Wegscheider K, et al. (2010) Rapid identification of bacteria from positive bloodculture bottles by use of matrix-assisted laser desorption-ionization time of flight mass spectrometry fingerprinting. J ClinMicrobiol 48: 1584-1591 [CrossRef] [Google Scholar] [PubMed]
  18. Rodríguez-Sánchez B, Sánchez-Carrillo C, Ruiz A, Marín M, Cercenado E, et al. (2014) Direct identification of pathogens from positive blood cultures using matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. ClinMicrobiol Infect 20: O421-O427 [CrossRef] [PubMed]
  19. Lagacé-Wiens PR, Adam HJ, Karlowsky JA, Nichol KA, Pang PF, et al. (2012) Identification of blood culture isolates directly from positive blood cultures by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry and a commercial extraction system: analysis of performance, cost, and turnaround time. J ClinMicrobiol 50: 3324-3328 [CrossRef] [Google Scholar] [PubMed]
  20. Bidart M, Bonnet I, Hennebique A, Kherraf ZE, Pelloux H, et al. (2015) An in-house assay is superior to Sepsityper for direct matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry identification of yeast species in blood cultures. J ClinMicrobiol 53: 1761- 1764 [CrossRef] [Google Scholar] [PubMed]
  21. Zboromyrska Y, Rubio E, Alejo I, Vergara A, Mons A, et al. (2016) Development of a new protocol for rapid bacterial identification and susceptibility testing directly from urine samples. Clin Microbiol Infect 22: 561 [CrossRef] [Google Scholar] [PubMed]
  22. Veron L, Mailler S, Girard V, Muller BH, L'Hostis G, et al. (2015) Rapid urine preparation prior to identification of uropathogens by MALDI-TOF MS. Eur J ClinMicrobiol Infect Dis 34: 1787-1795 [CrossRef] [Google Scholar] [PubMed]
  23. Íñigo M, Coello A, Fernández-Rivas G, Rivaya B, Hidalgo J, et al. (2016) Direct Identification of Urinary Tract Pathogens from Urine Samples, Combining Urine Screening Methods and Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry. J ClinMicrobiol 54: 988-993 [CrossRef] [Google Scholar] [PubMed]
  24. El Khéchine A, Couderc C, Flaudrops C, Raoult D, Drancourt M, et al. (2011) Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry identification of mycobacteria in routine clinical practice. PLoS One 6: e24720 [CrossRef] [Google Scholar] [PubMed]
  25. Rodríguez-Sánchez B, Ruiz-Serrano MJ, Ruiz A, Timke M, Kostrzewa M, et al. (2016) Evaluation of MALDI Biotyper Mycobacteria Library v3.0 for Identification of Nontuberculous Mycobacteria. J ClinMicrobiol 54: 1144- 1147 [CrossRef] [Google Scholar] [PubMed]
  26. Pranada AB, Witt E, Bienia M, Kostrzewa M, Timke M, et al. (2017) Accurate differentiation of Mycobacterium chimaera from Mycobacterium intracellulare by MALDI-TOF MS analysis. J Med Microbiol 66: 670-677 [CrossRef] [Google Scholar] [PubMed]
  27. Alcaide F, Peña MJ, Pérez-Risco D, Camprubi D, Gonzalez-Luquero L, et al. (2017) Increasing isolation of rapidly growing mycobacteria in a low-incidence setting of environmental mycobacteria, 1994-2015.Eur J ClinMicrobiol Infect Dis 36: 1425-1432 [CrossRef] [Google Scholar] [PubMed]
  28. Fangous MS, Mougari F, Gouriou S, Calvez E, Raskine L, Cambau E, et al. (2014) Classification algorithm for subspecies identification within the Mycobacterium abscessus species, based on matrix-assisted laser desorption ionization-time of flight mass spectrometry. J ClinMicrobiol 52: 3362-3369 [CrossRef] [Google Scholar] [PubMed]
  29. Alcaide F, Amlerová J, Bou G, Ceyssens PJ, Coll P, et al. (2017) How To: Identify Non-Tuberculous Mycobacterium Species By Using Maldi-Tof Mass Spectrometry. ClinMicrobiol Infect pii: S1198-743X(17)30643-2 [CrossRef] [Google Scholar] [PubMed]
  30. Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, et al. (2015) Multidrug-Resistant Candida auris Misidentified as Candida haemulonii: Characterization by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and DNA Sequencing and Its Antifungal Susceptibility Profile Variability by Vitek 2, CLSI Broth Microdilution, and Etest Method. J ClinMicrobiol 53:1823-1830 [CrossRef] [Google Scholar] [PubMed]
  31. Posteraro B, De Carolis E, Vella A, Sanguinetti M (2013) MALDI-TOF mass spectrometry in the clinical mycology laboratory: identification of fungi and beyond. Expert Rev Proteomics 10: 151-164 [CrossRef] [Google Scholar] [PubMed]
  32. Wang W, Xi H, Huang M, Wang J, Fan M, et al. (2014) Performance of mass spectrometric identification of bacteria and yeasts routinely isolated in a clinical microbiology laboratory using MALDI-TOF MS. J Thorac Dis 6: 524-533 [CrossRef] [Google Scholar] [PubMed]
  33. Ranque S, Normand AC, Cassagne C, Murat JB, Bourgeois N, et al. (2014) MALDI-TOF mass spectrometry identification of filamentous fungi in the clinical laboratory. Mycoses 57: 135-140 [CrossRef] [Google Scholar] [PubMed]
  34. De Carolis E, Posteraro B, Lass-Flörl C, Vella A, Florio AR, et al. (2012) Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. ClinMicrobiol Infect 18: 475-484 [CrossRef] [Google Scholar] [PubMed]
  35. Lau AF, Drake SK, Calhoun LB, Henderson CM, Zelazny AM, et al. (2013) Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J ClinMicrobiol 51: 828-834 [CrossRef] [Google Scholar] [PubMed]
  36. Del Chierico F, Masotti A, Onori M, Fiscarelli E, Mancinelli L, et al. (2012) MALDI-TOF MS proteomic phenotyping of filamentous and other fungi from clinical origin. J Proteomics 75: 3314-3330 [CrossRef] [Google Scholar] [PubMed]
  37. Zvezdanova ME, Escribano P, Ruiz A, Martínez-Jiménez MC, Peláez T, et al. (2017) Increased Species-Assignment of Filamentous Fungi using MALDI-TOF MS coupled with a Simplified Sample Processing and an In- House Library. Med Mycol [CrossRef] [Google Scholar] [PubMed]
  38. French K, Evans J, Tanner H, Gossain S, Hussain A, et al. (2016) The Clinical Impact of Rapid, Direct MALDI-ToF Identification of Bacteria from Positive Blood Cultures. PLoS One 11: e0169332 [CrossRef] [Google Scholar] [PubMed]
  39. Oviaño M, Fernández B, Fernández A, Barba MJ, Mouriño C, et al. (2014) Rapid detection of enterobacteriaceae producing extended spectrum betalactamases directly from positive blood cultures by matrix-assisted laser desorption ionization-time of flight mass spectrometry. ClinMicrobiol Infect 20: 1146-1157 [CrossRef] [Google Scholar] [PubMed]
  40. Jung JS, Popp C, Sparbier K, Lange C, Kostrzewa M, et al. (2014) Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid detection of β-lactam resistance in Enterobacteriaceae derived from blood cultures. J ClinMicrobiol 52: 924- 930 [CrossRef] [Google Scholar] [PubMed]
  41. Johansson Å, Nagy E, Sóki J (2014) Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization--time of flight mass spectrometry.J Med Microbiol 63: 1105-1110 [CrossRef] [Google Scholar] [PubMed]
  42. Papagiannitsis CC, Študentová V, Izdebski R, Oikonomou O, Pfeifer Y, et al. (2015) Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity. J Clin Microbiol 53: 1731- 1735 [CrossRef] [Google Scholar] [PubMed]
  43. Vella A, De Carolis E, Vaccaro L, Posteraro P, Perlin DS, et al. (2013) Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis. J ClinMicrobiol 51: 2964-2969 [CrossRef] [Google Scholar] [PubMed]
  44. De Carolis E, Vella A, Florio AR, Posteraro P, Perlin DS, et al. (2012) Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species. J ClinMicrobiol 50: 2479-2483 [CrossRef] [Google Scholar] [PubMed]
  45. Paul S, Singh P, A S S, Rudramurthy SM, Chakrabarti A, et al. (2017) Rapid detection of fluconazole resistance in Candida tropicalis by MALDI-TOF MS.Med Mycol [CrossRef] [Google Scholar] [PubMed]