Profile
International Journal of Clinical & Medical Microbiology Volume 1 (2016), Article ID 1:IJCMM-113, 7 pages
https://doi.org/10.15344/2456-4028/2016/113
Review Article
The SOS Response of Biofilms

Katie Leiker and Tao Weitao*

College of Science and Mathematics, Southwest Baptist University, 1600 University Avenue, Bolivar, Missouri 65613, USA
Prof. Tao Weitao, College of Science and Mathematics. Southwest Baptist University. 1600 University Avenue. Bolivar, Missouri 65613, USA, Tel: 417 328 1470; E-mail: twei@sbuniv.edu
26 August 2016; 19 November 2016; 21 November 2016
Leiker K, Weitao T (2016) The SOS Response of Biofilms. Int J Clin Med Microbiol 1: 113. doi: https://doi.org/10.15344/2456-4028/2016/113

References

  1. Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238: 86-95 [CrossRef] [Google Scholar] [PubMed]
  2. Costerton JW, Lewandowski Z, Caldwell DE, Korber DR, Lappin-Scott HM (1995) Microbial biofilms. Annu Rev Microbiol 49: 711-745 [CrossRef] [Google Scholar] [PubMed]
  3. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358: 135-138 [CrossRef] [Google Scholar] [PubMed]
  4. Mah TF, Pitts B, Pellock B, Walker GC, Stewart PS, et al. (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426: 306-310 [CrossRef] [Google Scholar] [PubMed]
  5. Gotoh H, Zhang Y, Dallo SF, Hong S, Kasaraneni N, et al. (2008) Pseudomonas aeruginosa, under DNA replication inhibition, tends to form biofilms via Arr. Res Microbiol 159: 294-302 [CrossRef] [Google Scholar] [PubMed]
  6. Hoffman LR, D'Argenio DA, MacCoss MJ, Zhang Z, Jones RA, et al. (2005) Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 436: 1171-1175 [CrossRef] [Google Scholar] [PubMed]
  7. Linares JF, Gustafsson I, Baquero F, Martinez JL (2006) Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci U S A 103: 19484-19489 [CrossRef] [Google Scholar] [PubMed]
  8. Hung DT, Zhu J, Sturtevant D, Mekalanos JJ (2006) Bile acids stimulate biofilm formation in Vibrio cholerae. Mol Microbiol 59: 193-201 [CrossRef] [Google Scholar] [PubMed]
  9. Geier H, Mostowy S, Cangelosi GA, Behr MA, Ford TE, et al. (2008) Autoinducer-2 Triggers the Oxidative Stress Response in Mycobacterium avium, Leading to Biofilm Formation. Appl Environ Microbiol 74: 1798- 1804 [CrossRef] [Google Scholar] [PubMed]
  10. Takahashi A, Yomoda S, Ushijima Y, Kobayashi I, Inoue M (1995) Ofloxacin, norfloxacin and ceftazidime increase the production of alginate and promote the formation of biofilm of Pseudomonas aeruginosa in vitro. J Antimicrob Chemother 36: 743-745 [CrossRef] [Google Scholar] [PubMed]
  11. Gotoh H, Zhang Y , Dallo SF, Hong S, Kasaraneni N, et al. (2008) Pseudomonas aeruginosa under DNA replication inhibition tends to form biofilms via Arr. Res Microbiol 159: 294-302 [CrossRef] [Google Scholar] [PubMed]
  12. Gotoh H, Kasaraneni N, Devineni N, Dallo SF, Weitao T (2010) SOS involvement in stress-inducible biofilm formation. Biofouling 26: 603-611 [CrossRef] [Google Scholar] [PubMed]
  13. Weitao T (2011) SOS-inducible biofilms, in Microbiology Book Series Volume # 3: Science against microbial pathogens: communicating current research and technological advances., A. Mendez-Vilas, Editor, Formatex Research Center
  14. Chellappa ST, Maredia R, Phipps K, Haskins WE, Weitao T (2013) Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation. Res Microbiol 164: 1019-1027 [CrossRef] [Google Scholar] [PubMed]
  15. Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48: 60-93 [Google Scholar] [PubMed]
  16. Weigle JJ (1953) Induction of Mutations in a Bacterial Virus. Proc Natl Acad Sci U S A 39: 628-636 [CrossRef] [Google Scholar] [PubMed]
  17. Radman M (1974) SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis. Basic Life Sci 5A: 355- 367 [CrossRef] [Google Scholar] [PubMed]
  18. Borek E, Ryan A (1958) The Transfer of Irradiation-Elicited Induction in a Lysogenic Organism. Proc Natl Acad Sci U S A 44: 374-377 [CrossRef] [Google Scholar] [PubMed]
  19. Hertman I, Luria SE (1967) Transduction studies on the role of a rec+ gene in the ultraviolet induction of prophage lambda. J Mol Biol 23: 117-133 [CrossRef] [Google Scholar] [PubMed]
  20. Defais M, Fauquet P, Radman M, Errera M (1971) Ultraviolet reactivation and ultraviolet mutagenesis of lambda in different genetic systems. Virology 43: 495-503 [CrossRef] [Google Scholar] [PubMed]
  21. Craig NL, Roberts JW (1981) Function of nucleoside triphosphate and polynucleotide in Escherichia coli recA protein-directed cleavage of phage lambda repressor. J Biol Chem 256: 8039-8044 [Google Scholar] [PubMed]
  22. Witkin EM (1969) Ultraviolet-induced mutation and DNA repair. Annu Rev Microbiol 23: 487-514 [CrossRef] [Google Scholar] [PubMed]
  23. Bridges BA (2005) Error-prone DNA repair and translesion DNA synthesis. II: The inducible SOS hypothesis. DNA Repair (Amst) 4: 725-726 [CrossRef] [Google Scholar] [PubMed]
  24. Howard-Flanders P, Boyce RP, Theriot L (1966) Three loci in Escerichia coli K-12 that control the excision of pyrimidine dimers and certain other mutagen products from DNA. Genetics 53: 1119-1136 [Google Scholar] [PubMed]
  25. Little JW (1991) Mechanism of specific LexA cleavage: autodigestion and the role of RecA coprotease. Biochimie 73: 411-421 [CrossRef] [Google Scholar] [PubMed]
  26. Butala M, Zgur-Bertok D, Busby SJ (2009) The bacterial LexA transcriptional repressor. Cell Mol Life Sci 66: 82-93 [CrossRef] [Google Scholar] [PubMed]
  27. Courcelle J, Khodursky A, Peter B, Brown PO, Hanawalt PC (2001) Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158: 41-64 [Google Scholar] [PubMed]
  28. Fernández De Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, et al. (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35: 1560-1572 [CrossRef] [Google Scholar] [PubMed]
  29. Cox MM (2007) Regulation of bacterial RecA protein function. Crit Rev Biochem Mol Biol 42: 41-63 [CrossRef] [Google Scholar] [PubMed]
  30. Chen Z, Yang H, Pavletich NP (2008) Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures. Nature 453: 489- 484 [CrossRef] [Google Scholar] [PubMed]
  31. Little JW (1984) Autodigestion of lexA and phage lambda repressors. Proc Natl Acad Sci U S A 81: 1375-1379 [CrossRef] [Google Scholar] [PubMed]
  32. Campbell A (2003) The future of bacteriophage biology. Nat Rev Genet 4: 471-477 [CrossRef] [Google Scholar] [PubMed]
  33. Erill I, Campoy S, Barbé J (2007) Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31: 637- 656 [CrossRef] [Google Scholar] [PubMed]
  34. Imlay JA, Linn S (1987) Mutagenesis and stress responses induced in Escherichia coli by hydrogen peroxide. J Bacteriol 169: 2967-2976 [CrossRef] [Google Scholar] [PubMed]
  35. Cirz RT, O'Neill BM, Hammond JA, Head SR, Romesberg FE, et al. (2006) Defining the Pseudomonas aeruginosa SOS Response and Its Role in the Global Response to the Antibiotic Ciprofloxacin. J Bacteriol 188: 7101- 7110 [CrossRef] [Google Scholar] [PubMed]
  36. Gotoh H, Kasaraneni N, Devineni N, Dallo SF, Weitao T (2010) SOS involvement in stress-inducible biofilm formation. Biofouling 26: 603-611 [CrossRef] [Google Scholar] [PubMed]
  37. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces "insurance effects" in biofilm communities. Proc Natl Acad Sci U S A 101: 16630-16635 [CrossRef] [Google Scholar] [PubMed]
  38. Inagaki S, Matsumoto-Nakano M, Fujita K, Nagayama K, Funao J, et al. (2009) Effects of recombinase A deficiency on biofilm formation by Streptococcus mutans. Oral Microbiol Immunol 24: 104-108 [CrossRef] [Google Scholar] [PubMed]
  39. Vergara-Irigaray M, Valle J, Merino N, Latasa C, Garcia B, et al. (2009) Relevant Role of Fibronectin-Binding Proteins in Staphylococcus aureus Biofilm-Associated Foreign-Body Infections. Infect Immun 77: 3978-3991 [CrossRef] [Google Scholar]
  40. Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A 106: 4629-4634 [CrossRef] [Google Scholar] [PubMed]
  41. van der Veen S, Abee T (2010) Dependence of Continuous-Flow Biofilm Formation by Listeria monocytogenes EGD-e on SOS Response Factor YneA. Appl Environ Microbiol 76: 1992-1995 [CrossRef] [Google Scholar] [PubMed]
  42. Costa SB, Campos AC, Pereira AC, de Mattos-Guaraldi AL, Júnior RH, et al. (2014) Adherence to abiotic surface induces SOS response in Escherichia coli K-12 strains under aerobic and anaerobic conditions. Microbiology 160: 1964-1973 [CrossRef] [Google Scholar] [PubMed]
  43. Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, et al. (2009) The biofilm life cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous prophage. ISME J 3: 271-282 [CrossRef] [Google Scholar] [PubMed]
  44. Petrova OE, Schurr JR, Schurr MJ, Sauer K (2011) The novel Pseudomonas aeruginosa two-component regulator BfmR controls bacteriophage mediated lysis and DNA release during biofilm development through PhdA. Mol Microbiol 81: 767-783 [CrossRef] [Google Scholar] [PubMed]
  45. Hui JG, Mai-Prochnow A, Kjelleberg S, McDougald D, Rice SA, (2014) Environmental cues and genes involved in establishment of the superinfective Pf4 phage of Pseudomonas aeruginosa. Front Microbiol 5: 654 [CrossRef] [Google Scholar] [PubMed]
  46. Okshevsky M, Meyer RL (2015) The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol 41: 341-352 [CrossRef] [Google Scholar] [PubMed]
  47. Okshevsky M, Regina VR, Meyer RL (2015) Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol 33: 73-80 [CrossRef] [Google Scholar] [PubMed]
  48. Zegans ME (2009) Interaction between Bacteriophage DMS3 and Host CRISPR Region Inhibits Group Behaviors of Pseudomonas aeruginosa. J Bacteriol 191: 210-219 [CrossRef] [Google Scholar] [PubMed]
  49. Cady KC, O'Toole GA (2011) Non-Identity-Mediated CRISPRBacteriophage Interaction Mediated via the Csy and Cas3 Proteins. J Bacteriol 193: 3433-3445 [CrossRef] [Google Scholar] [PubMed]
  50. Barrangou R1, Fremaux C, Deveau H, Richards M, Boyaval P, et al. (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315: 1709-1712 [CrossRef] [Google Scholar] [PubMed]
  51. Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, et al. (2008) Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321: 960-964 [CrossRef] [Google Scholar] [PubMed]
  52. Heusslera GE, Cadya KC, Koeppena K, Bhujub S, Stantona BA, et al. (2015) Clustered Regularly Interspaced Short Palindromic Repeat- Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes. mBio 6: e00129-15 [CrossRef] [Google Scholar] [PubMed]
  53. Balcázar JL, Subirats J, Borrego CM (2015) The role of biofilms as environmental reservoirs of antibiotic resistance. Front Microbiol 6: 1216 [CrossRef] [Google Scholar] [PubMed]
  54. Elasri MO, Miller RV (1999) Study of the response of a biofilm bacterial community to UV radiation. Appl Environ Microbiol 65: 2025-2031 [Google Scholar] [PubMed]
  55. Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46: 202-256 [Google Scholar] [PubMed]
  56. Anderl JN, Franklin MJ, Stewart PS (2000) Role of Antibiotic Penetration Limitation in Klebsiella pneumoniae Biofilm Resistance to Ampicillin and Ciprofloxacin. Antimicrob. Antimicrob Agents Chemother 44: 1818-1824 [CrossRef] [Google Scholar] [PubMed]
  57. Salcedo DE, Lee JH, Ha UH, Kim SP, et al., (2015) The effects of antibiotics on the biofilm formation and antibiotic resistance gene transfer. Journal Desalination and Water Treatment 54: 3582-3588 [CrossRef] [Google Scholar]
  58. Miller C, Thomsen LE, Gaggero C, Mosseri R, Ingmer H, et al. (2004) SOS response induction by beta-lactams and bacterial defense against antibiotic lethality. Science 305: 1629-1631 [CrossRef] [Google Scholar] [PubMed]
  59. Bertrand-Burggraf E, Oertel P, Schnarr M, Daune M, Granger-Schnarr M (1989) Effect of induction of SOS response on expression of pBR322 genes and on plasmid copy number. Plasmid 22: 163-168 [CrossRef] [Google Scholar] [PubMed]
  60. Maiques E, Ubeda C, Campoy S, Salvador N, Lasa I, et al. (2006) ß-Lactam Antibiotics Induce the SOS Response and Horizontal Transfer of Virulence Factors in Staphylococcus aureus. J Bacteriol 188: 2726-2729 [CrossRef] [Google Scholar] [PubMed]
  61. Partridge SR, Tsafnat G, Coiera E, Iredell JR (2009) Gene cassettes and cassette arrays in mobile resistance integrons. FEMS Microbiol Rev 33: 757-784 [CrossRef] [Google Scholar] [PubMed]
  62. Cambray G, Guerout AM, Mazel D (2010) Integrons. Annu Rev Genet 44: 141-166 [CrossRef] [Google Scholar] [PubMed]
  63. Baharoglu Z, Bikard D, Mazel D (2010) Conjugative DNA Transfer Induces the Bacterial SOS Response and Promotes Antibiotic Resistance Development through Integron Activation. PLoS Genet 6: e1001165 [CrossRef] [Google Scholar] [PubMed]
  64. Hocquet D, Llanes C, Thouverez M, Kulasekara HD, Bertrand X, et al. (2012) Evidence for induction of integron-based antibiotic resistance by the SOS response in a clinical setting. PLoS Pathog 8: e1002778 [CrossRef] [Google Scholar] [PubMed]
  65. Alam MK, Alhhazmi A, DeCoteau JF, Luo Y, Geyer CR, et al. (2016) RecA Inhibitors Potentiate Antibiotic Activity and Block Evolution of Antibiotic Resistance. Cell Chem Biol 23: 381-391 [CrossRef] [Google Scholar] [PubMed]
  66. Lewis K (2010) Persister cells. Annu Rev Microbiol 64: 357-372 [CrossRef] [Google Scholar] [PubMed]
  67. del Pozo JL, Patel R (2007) The Challenge of Treating Biofilm-associated Bacterial Infections. Clin Pharmacol Ther 82: 204-209 [CrossRef] [Google Scholar] [PubMed]
  68. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5: 48-56 [CrossRef] [Google Scholar] [PubMed]
  69. Dörr T, Lewis K, Vulić M (2009) SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 5: e1000760 [CrossRef] [Google Scholar] [PubMed]
  70. Dörr T, Vulić M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8: e1000317 [CrossRef] [Google Scholar] [PubMed]
  71. van der Veen S, Abee T (2011) Generation of variants in Listeria monocytogenes continuous-flow biofilms is dependent on radical-induced DNA damage and RecA-mediated repair. PLoS One 6: e28590 [CrossRef] [Google Scholar] [PubMed]
  72. Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, et al. (2013) Starvation, Together with the SOS Response, Mediates High Biofilm-Specific Tolerance to the Fluoroquinolone Ofloxacin. PLoS Genetics 9: e1003144 [CrossRef] [Google Scholar] [PubMed]
  73. Steenackers HP, Parijs I, Foster KR, Vanderleyden J (2016) Experimental evolution in biofilm populations. FEMS Microbiol Rev 40: 373-397 [CrossRef] [Google Scholar] [PubMed]
  74. Martin M, Hölscher T, Dragoš A, Cooper VS, Kovács ÁT (2016) Laboratory Evolution of Microbial Interactions in Bacterial Biofilms. J Bacteriol 198: 2564-2571 [CrossRef] [Google Scholar] [PubMed]
  75. Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11: 1034-1043 [CrossRef] [Google Scholar] [PubMed]
  76. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39: 649-669 [CrossRef] [Google Scholar] [PubMed]
  77. Stewart PS, Franklin MJ (2008) Physiological heterogeneity in biofilms. Nat Rev Microbiol 6: 199-210 [CrossRef] [Google Scholar] [PubMed]
  78. Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33: 206-224 [CrossRef] [Google Scholar] [PubMed]
  79. Culyba MJ, Mo CY, Kohli RM (2015) Targets for Combating the Evolution of Acquired Antibiotic Resistance. Biochemistry 54: 3573-3582 [CrossRef] [Google Scholar] [PubMed]
  80. Galhardo RS, Hastings PJ, Rosenberg SM (2007) Mutation as a Stress Response and the Regulation of Evolvability. Crit Rev Biochem Mol Biol 42: 399-435 [CrossRef] [Google Scholar] [PubMed]
  81. Finkel SE (2006) Long-term survival during stationary phase: evolution and the GASP phenotype. Nat Rev Microbiol 4: 113-120 [CrossRef] [Google Scholar] [PubMed]
  82. Riley MA, Wertz JE (2002) Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 56: 117-137 [CrossRef] [Google Scholar] [PubMed]
  83. Žgur-Bertok D (2012) Regulating colicin synthesis to cope with stress and lethality of colicin production. Biochem Soc Trans 40: 1507-1511 [CrossRef] [Google Scholar] [PubMed]
  84. Rendueles O, Beloin C, Latour-Lambert P, Ghigo JM, et al. (2014) A new biofilm-associated colicin with increased efficiency against biofilm bacteria. ISME J 8: 1275-1288 [CrossRef] [Google Scholar] [PubMed]
  85. Sun Z, Shi J, Liu C, Jin Y, Li K, et al. (2014) PrtR Homeostasis Contributes to Pseudomonas aeruginosa Pathogenesis and Resistance against Ciprofloxacin. Infection and Immunity 82: 1638-1647 [CrossRef] [Google Scholar] [PubMed]
  86. Waite RD, Curtis MA (2008) Pseudomonas aeruginosa PAO1 Pyocin Production Affects Population Dynamics within Mixed-Culture Biofilms. J. Bacteriol 191: 1349-1354 [CrossRef] [Google Scholar] [PubMed]
  87. Narisawa N, Haruta S, Arai H, Ishii M, Igarashi Y (2008) Coexistence of Antibiotic-Producing and Antibiotic-Sensitive Bacteria in Biofilms Is Mediated by Resistant Bacteria. Appl Environ Microbiol 74: 3887-3894 [CrossRef] [Google Scholar] [PubMed]
  88. Eastman JM, Harmon LJ, LA HJ, Joyce P, Forney LJ (2011) The onion model, a simple neutral model for the evolution of diversity in bacterial biofilms. J Evol Biol 24: 2496-2504 [CrossRef] [Google Scholar] [PubMed]
  89. Luján AM, Maciá MD, Yang L, Molin S, Oliver A (2011) Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators. PLoS ONE 6: e27842 [CrossRef] [Google Scholar] [PubMed]
  90. Wolfe A, K Phipps, Weitao T (2014) Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions. Cell Biosci 4: 1-9 [CrossRef] [Google Scholar] [PubMed]
  91. Guo P, Zhao Z, Haak J, Wang S, Wu D, et al. (2014) Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation. Biotechnol Adv 32: 853-872 [CrossRef] [Google Scholar] [PubMed]
  92. Tyerman JG, Ponciano JM, Joyce P, Forney LJ, Harmon LJ (2013) The evolution of antibiotic susceptibility and resistance during the formation of Escherichia coli biofilms in the absence of antibiotics. BMC Evol Biol 13: 22 [CrossRef] [Google Scholar] [PubMed]
  93. Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183: 6746-6751 [CrossRef] [Google Scholar] [PubMed]
  94. Brooun A, Liu S, Lewis K (2000) A Dose-Response Study of Antibiotic Resistance in Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother 44: 640-646 [CrossRef] [Google Scholar] [PubMed]