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Menopause or Estrogen Deficiency Increase Risk of Heart 
Failure

Earlier menopause, post- menopause or Estrogen deficiency was 
associated with an elevated risk of heart failure. All 1,494 hospital 
admissions for heart failure as well as patients reported development 
of heart failure, angina, or CVD during a hospitalization under 
evaluation from 28,516 women in the Women Health Initiative over 
an average 13 years of follow-up showed that shorter reproductive 
duration, driven by earlier age at menopause, was associated with 
an increase in heart failure risk [1]. A report published in 2006 
from 38283 women showed that each 5-year increment in age after 
menopause is associated with a 44 % increase of the risk of heart 
failure and with a 52 % risk of all-cause mortality [2]. From the meta-
analysis of 3,568 cases in three included studies, women who reached 
menopause at a younger age, particularly if earlier than age 45 years, 
had a 20% elevated risk of heart failure compared with those with later 
menopause [3].

Bilateral oophorectomies (or ovariotomies) have long-term negative 
consequences for heart diseases in post-menopause women [4]. From 
146 young females after complete oophorectomy in the age range 
of 15-30 years, increases in serum cholesterol, serum triglyceride, 
the incidence of cardiac symptoms, and the frequency of coronary 
vascular diseases were found [5].

Ovarian hormones include estradiol (or estrogen) and progesterone 
that are necessary for women's cardiovascular protection and 
general health. Advanced aging and estrogen loss led to decreases in 
myocardial relaxation and elevations in filling pressure of heart [6]. 
Post-menopausal women were reported to increase the incidence of 
heart failure with preserved ejection fraction exponentially, compared 
with age-matched men, which indicates a potential role of menopausal 
hormonal changes in diastolic dysfunction. Estrogen deficiency were 
found to influence the early heart diastolic relaxation via calcium 
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cardiac hypertrophy and cardiac fibrosis [7]. Non-menopausal 
women showed less cardiac inflammation, cardiac fibrosis, and 
cardiac apoptosis upon heart failure than age-matched men, which 
changes after menopause due to declining of the estrogen levels. From 
the fact that the underlying pathways of inflammation, fibrosis, and 
apoptosis, post-menopause-related increased heart failure risk might 
partially be modulated by estrogen [9].

The underlying mechanisms of cardiac inflammation, cardiac 
apoptosis, and cardiac fibrosis were difficult to be investigated in 
post-menopausal women since human heart tissues only under post-
menopause were hardly sampled. The ovariectomized animals are the 
most used animal models for a menopause [10], as the changes in 
biochemical and physiological function are comparable with those 
seen in menopausal women [11], i.e. decreased levels of progesterone 
and estrogen [12], increased risk of cardiovascular diseases [13], and 
enhanced rate of bone loss [14]. Menopause-related estrogen-deficiency 
may cause cardiovascular remodeling, increased left ventricular 
hypertrophy, left ventricular dilatation, cardiac inflammation, 
cardiac apoptosis, and cardiac fibrosis [15-17]. Ovariectomized 
rodents were also used as a menopausal metabolic syndrome model 
mimic cardiometabolic complications associated to metabolic 
syndrome after menopause [18]. Those pathological characteristics
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Abstract

Menopause or Estrogen deficiency increase risk of heart failure. Cardiac inflammation, apoptosis, 
and fibrosis were found in rats with bilateral ovariectomy or with co-mobility such as aging, diabetes, 
or hypertension. In current review, exercise training suppressed ovariectomy/diabetes-induced cardiac 
inflammatory status (decreases in Protein oxidation and TNF-α/ IL-10, increase in GSH/GSSG) as well 
as suppressed ovariectomy/hypertension-induced cardiac anti-oxidative stress (increases in SOD and 
Catalase) and inflammatory status (decreases in TNF-α, p-IKKα/ß, p-NFkB, COX-2). Exercise training 
suppressed ovariectomy-induced cardiac Fas dependent apoptotic pathways (decreases in t-Bid, Bad, Bax, 
Bak, Active Caspase 9, and Active Caspase 3) and mitochondria dependent apoptotic pathways (decreases 
in TNF-α, TNFR1, Fas, FADD, active Caspase 8, active Caspase 3) in ovariectomized rat models. Exercise 
training attenuated ovariectomy-induced cardiac fibrosis and fibrotic pathways (decreases in Collagen I, 
TGF-ß, p-Smad 2/3, CTGF, t-PA, MMP9).

The findings might provide one possible mechanism of exercise training on preventing heart failure 
in menopausal or bilateral oophorectomied women through anti-inflammatory, anti-apoptotic, and anti-
fibrotic pathways.
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were recognized as the most important predictor of cardiovascular 
morbidity and mortality and were important risk factors for heart 
failure [19].

Menopause or Estrogen deficiency increase cardiac inflammation

Cardiac pro-inflammatory interleukin-6, tumor necrosis factor-
alpha (TNF-α), lipoperoxidation, protein oxidation, catalase activity 
(CA), glutathione peroxidase (GPx), and glutathione redox balance 
(GSH/GSSG) were higher in 24 months old aging rats with bilateral 
ovariectomy for 9 weeks, compared with 5 months old young rats 
without ovariectomy [20]. In 5 months old young rats, bilateral 
ovariectomy for 9 weeks increased cardiac lipoperoxidation, cardiac 
catalase activity, and cardiac glutathione peroxidase compared with 
age-matched sham-ovariectomy [20]. However, in 2 months very 
young old ovariectomized rats,  cardiac inflammatory levels of IL-6 
and IL-10 levels did not increase in ventricular tissue [21].

Bilateral ovariectomy for 8 weeks in 6-7 month old rats induced 
cardiac tumor necrosis factor-alpha [22] as well as aged Norway 
Brown rats (18–22 month old) found that bilateral ovariectomy for 13 
weeks increased Interleukin-6R1, iNOS, and tumor necrosis factor-
alpha measured by Affy array real-time PCR [23]. 

The diabetic ovariectomized female Wistar rats presented cardiac 
impaired systolic and diastolic functions as well as increased cardiac 
overload with higher protein oxidation and tumor necrosis factor-
alpha /Interleukin-10 ratio than diabetic non-ovariectomized female 
rats [24].

Adult female Sprague-Dawley rats (3-4 month old) after 
ovariectomy for 9 weeks increase in genes mediating inflammatory 
inhibin βa, interleukin-6, tumor necrosis factor-alpha, suppressor of 
sytokine signaling 2 (SOCS2), and suppressor of cytokine signaling 3 
(SOCS3) [25].

The changes in cardiac inflammation by estrogen deficiency were 
shown to contribute to the pathogenesis of heart failure in individuals 
with hypertension [26]. Estrogen deficiency augmented cardiac 
inflammation and oxidative stress and thereby aggravated myocardial 
fibrosis and diastolic dysfunction in hypertensive female rats [26]. In 
addition, the angiotensin II type I receptor was considered to be a 
key in the pathogenesis of hypertension alone or the coexistence of 
hypertension and ovariectomy [27,28], which had been shown to be 
upregulated in cardiac hypertrophy and failing heart [29].

Menopause or Estrogen deficiency increase cardiac apoptosis 

Cardiac Fas-dependent apoptosis were significantly increased after 
ovariectomy with evidence of increases in tumor necrosis factor-
alpha, Fas ligand, Fas receptors, FADD, activated caspase-8 and 
activated caspase-3 [22,30,31]. Cardiac mitochondria-dependent 
apoptosis were significantly increased after ovariectomy with evidence 
of increases in t-Bid, Bad, Bax, cytochrome c, activated caspase-9, 
and activated caspase-3 [22,30,31]. Aged Norway Brown rats (18–
22 month old) were found that bilateral ovariectomy for 13 weeks 
increased cardiac pro-apoptotic markers caspase 3, caspase 9, calpain 
2, and MAPK-activating death domain protein (MADD) compared 
with sham-ovariectomy measured by Affy array real-time Polymerase 
Chain Reaction (PCR) [23]. Adult female Sprague-Dawley rats (3–4 
month old) after ovariectomy for 9 weeks increased in proapoptotic 
genes (caspase 3, calpain) [25].
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Cardiac abnormalities in ovariectomy with a coexistent 
hypertension were associated with down-regulation of the estrogen 
receptors-mediated survival signaling pathways [32]. One study 
found that ovariectomy with a coexistent type 2 diabetes synergically 
enhance the cardiac apoptotic pathway through reduction of IGF-1 
and Bcl-2 gene and protein and upregulation of caspase 3 activity [33].

Measurement of blood pressure

Myocardium contains primarily type I and type III collagen [34]. 
Bilateral ovariectomies in 12 month old rats increased hypertrophy 
associated with a higher expression of beta-myosin heavy chain 
isoform, decreased pro-MMP-2 activity, and increased collagen I/
III ratio as well as had a decrease in cardiac estrogen receptor (ER) 
alpha and beta as well as angiotensin II type 2 receptor (AT2R) but 
an increase in angiotensin II type 1 receptor (AT1R) expression [17], 
which suggest that ovariectomy-induced heart remodeling can be 
regulated by Ang II receptor expression via estrogen mechanism. 
Young 3-4 month old female Sprague-Dawley rats after 9-week 
ovariectomy increased in extracellular matrix genes (collagen12 
alpha-1 and connexin 43) [25]. Aged 18–22 month old Norway 
Brown rats were found that bilateral ovariectomy (OVX) for 13 weeks 
increased cardiac fibrotic extracellular matrix markers connexin 43 
and fibronectin compared with sham-ovariectomy measured by Affy 
array real-time PCR [23].

In individuals with estrogen deficiency and hypertension, the 
changes of myocardial fibrosis were shown to contribute to the 
pathogenesis of heart failure [26]. The coexistence of hypertension 
with ovariectomy did elevated blood pressure, had more abnormal 
myocardial architecture, enlarged interstitial space, and increased 
cardiac fibrosis than hypertension without ovariectomy [35].

Aging and estrogen loss did decrease sarcoplasmic reticulum 
Ca2+ ATPase expression and increase cardiac collagen deposition 
and interstitial fibrosis, which may explain the progression of left 
ventricular diastolic dysfunction in older postmenopausal women 
from evidence based on 30 months old rat model with ovariectomy 
[36].

In type 2 diabetic ovariectomized rats model, menopause and 
type 2 diabetes enhanced the cardiac fibrosis through mechanism of 
miRNA-29 and miRNA-133 family [37].

Therapeutic effects of exercise training on general cardiovascular 
function in menopause

Exercise training has been used as an important therapeutic 
approach in management cardiovascular diseases for postmenopausal 
women [38-40]. Cardiovascular function such as heart rate and 
vagal tonus were improved after 8 weeks treadmill training in 
ovariectomized rats’ hearts [41]. Regular cardiorespiratory exercise is 
able to decrease cardiovascular disease risk factors in postmenopausal 
women, which is in part because of the impact of exercise on blood 
lipids and fibrinogen [42]. Reduction in both systolic and diastolic 
blood pressure values was found after exercise training which was 
accompanied by markedly increase of nitrate/nitrite levels in post-
menopausal women [40]. One study showed that exercise training 
by running on a treadmill for 60 min/day, 5 days/week for 10 weeks 
could increase cardiovascular protective effect via endothelium-
derived nitric oxide release [41]. Eight weeks running treadmill 
exercise training decreased myocardium oxidative stress, superoxide 
dismutase and catalase activities in ovariectomized rats [44].

https://doi.org/10.15344/2455-7498/2021/173


Int J Phys Ther Rehab                                                                                                                                                                                              IJPTR, an open access journal                                                                                                                                          
ISSN: 2455-7498                                                                                                                                                                                                       Volume 6. 2021. 173                            

Anti-inflammatory effects of exercise training on menopausal 
hearts

An 11-week running program (after 1 week ovariectomy) had 
no effects on cardiac levels of IL-6 and no change in IL-10 levels in 
ventricular tissue of 2 months very young old ovariectomized rats as 
well as ovariectomy in this study did not increase cardiac inflammation 
[21]. In ovariectomized female rats, the detailed anti-inflammatory 
pathway of exercise training on menopausal hearts is still unclear.

In diabetic ovariectomized female rats, exercise training on a 
treadmill running and in a ladder climbing adapted to rats (8 weeks, at 
40-60% of maximal capacity) improved exercise capacity, systolic and 
diastolic functions and cardiac overload as well as reduced protein 
oxidation and tumor necrosis factor-alpha/interleukin-10 ratio and 
increased GSH/GSSG and interleukin-10 relation to diabetic non-
ovariectomized female rats [24].

In postmenopausal female rats with hypertension, exercise training 
improved cardiac function associated with increase in antioxidant 
activities such as superoxide dismutase (SOD) and catalase [45]. In 
hypertensive ovariectomized female rats, exercise training suppressed 
hypertensive ovariectomized hearts-induced inflammatory pathways, 
with evidence of attenuates in cardiac tumor necrosis factor-alpha 
(TNF-α), phospho- inhibitory kappa B kinases alpha/beta (p-IKKα/β), 
phospho-nuclear factor kappa light chain enhancer of activated B 
cells (p-NFκB), cyclooxygenase-2 (COX-2), inducible nitric oxide 
synthase (iNOS) and interleukin-6 (IL-6), when compared with the 
sedentary [35].

Anti-apoptotic effects of exercise training on menopausal hearts

Treadmill running exercise training 1 hour daily for 10 weeks 
prevents bilateral ovariectomy-induced cardiac TUNEL-positive 
apoptotic cells as well as cardiac Fas receptor dependent apoptotic 
pathways, the evidence for which is based on the attenuation of 
TNF-α, Fas ligand, Fas death receptors, Fas-associated death domain 
(FADD), activated caspase 8, and activated caspase 3 when compared 
with sedentary ovariectomized condition [30]. Exercise training for 10 
weeks prevents bilateral ovariectomy-induced cardiac mitochondria-
dependent apoptotic pathway, the evidence for which is based on 
the attenuation of t-Bid, Bad, Bax and Bak activated caspase 9, and 
activated caspase 3 when compared with sedentary ovariectomized 
condition [30].

Exercise training with combined 17β-estradiol was shown to 
attenuate ovariectomy-induced cardiac TUNEL-positive apoptotic 
cells as well as attenuate ovariectomy-induced cardiac mitochondria-
dependent apoptotic pathway with evidence of a decrease in t-Bid, 
Bad, Bax, Cytochrome c, activated caspase-9, and activated caspase-3, 
when compared with the treating of the 17β-estradiol treatment alone 
or null treatment [45]. Exercise training with combined 17β-estradiol 
was shown to attenuate cardiac Fas receptor-dependent apoptotic 
pathways with the evidence of decreases in t-Bid, Cytochrome c, Fas 
receptors, FADD, activated caspase 8, activated caspase-9 and activated 
caspase-3 [45] when compared with the treating of the 17β-estradiol 
treatment alone or null treatment. Exercise training with combined 
17β-estradiol enhance the cardiac estrogen receptor and IGF-1 and 
Bcl-2 family survival pathways after an ovariectomy, which is based 
on an increase in ERα, ERβ, IGF-1, IGF-1R, p-PI3K, p-Akt and p-Bad 
when compared with the treating of the 17β-estradiol treatment 
alone or null treatment [46]. Inhibiting the cardiac apoptoticcascade 
and enhancing survival signals were associated with ERβ, which
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showed mainly an effect of exercise training. A previous study 
has indicated exercise-induced physiological effect in females was  
mediated by induction of AKT signaling, MAPK-pathways, protein 
synthesis and mitochondrial adaptation via ERβ [47]. This implies 
possibly that MAPK-pathway and ERβ may be associated with 
inhibition of the cardiac apoptotic cascade and enhancement of the 
survival signals.

Exercise training on a treadmill for 8 weeks could prevent 
ovariectomized hypertension-induced widely dispersed cardiac 
apoptosis through enhancing the Bcl2-related and mitochondrial 
biogenetic pro-survival pathways [48].

Anti-fibrotic effects of exercise training on menopausal hearts

A 10-week treadmill exercise training attenuated ovariectomy-
induced minor cardiac fibrosis [30]. An 8-week exercise training in 
female Wistar rats after ovariectomy for 2 months increased cardiac 
ovariectomy-suppressed miR-29 expression level as well as prevented 
ovariectomy-induced cardiac fibrosis through miR-29 and IGF-
1 pathways [49]. However, the detailed anti-fibrotic pathways of 
exercise training on menopausal heart is still unclear.

Exercise training combined 17β-estradiol was reported to prevent 
from ovariectomy-induced abnormal myocardial enlarged interstitial 
space and attenuate ovariectomy-induced cardiac fibrosis [45].

In ovariectomized hypertensive rats, exercise training attenuated 
cardiovascular adverse remodeling by reducing interstitial myocardial 
fibrosis [50]. Exercise training did decrease hypertension-induced 
cardiac angiotensin II type I receptor expression but did not reverse 
ovariectomy-decreased ERα and ERβ expression in hypertensive 
rats [35]. Exercise training appeared to suppress hypertensive 
ovariectomized hearts-induced fibrotic pathways, with evidence of 
attenuates in TGF-β, p-Smad2/3, CTGF, tPA, MMP9 and Collagen I, 
when compared with the sedentary hypertensive ovariectomy [35]. 
Actually, exercise training did not reverse ovariectomy-decreased 
ERα and ERβ expression in hypertensive rats [35]. Exercise training 
appeared to prevent hypertensive ovariectomized hearts-induced 
TGF-β/CTGF-mediated fibrotic pathways partially through 
decreasing angiotensin II type I receptor, but not through estrogen 
receptors [35].

In sum, exercise training suppressed ovariectomy/diabetes-
induced cardiac inflammatory status (decreases in Protein oxidation 
and TNF-α/ IL-10, increase in GSH/GSSG) as well as suppressed 
ovariectomy/hypertension-induced cardiac anti-oxidative stress 
(increases in SOD and Catalase) and inflammatory status (decreases 
in TNF-α, p-IKKα/ß, p-NFkB, COX-2). Exercise training suppressed 
ovariectomy-induced cardiac Fas dependent apoptotic pathways 
(decreases in t-Bid, Bad, Bax, Bak, Active Caspase 9, and Active 
Caspase 3) and mitochondria dependent apoptotic pathways 
(decreases in TNF-α, TNFR1, Fas, FADD, active Caspase 8, active 
Caspase 3) in ovariectomized rat models. Exercise training attenuated 
ovariectomy-induced cardiac fibrosis and fibrotic pathways (decreases 
in Collagen I, TGF-ß, p-Smad 2/3, CTGF, t-PA, MMP9). (Table 1). 
The findings might provide one possible mechanism of exercise 
training on preventing heart failure in menopausal or bilateral 
oophorectomied women through anti-inflammatory, anti-apoptotic, 
and anti-fibrotic pathways. Menopausal women should be highly 
aware of the progressive development in cardiac abnormality or heart 
failure, as well as they should devote themselves to exercise training 
and lifestyle modification.
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Cardiac Anti-Inflammatory Anti-apoptotic Anti-fibrotic

Mitochondrial-
dependent apoptotic 

pathways

Fas-dependent apoptotic 
pathways

OVX IL-6: no change
IL-10: no change

TUNEL-positive↓
t-Bid ↓
Bad↓
Bax ↓
Bak ↓
Active Caspase 9↓
Active Caspase 3 ↓

TUNEL-positive↓
TNF-α↓ 
TNFR1↓
Fas↓
FADD↓
Active Caspase 8↓
Active Caspase 3↓

Myocardiac fibrosis↓

OVX-DM Protein oxidation ↓
TNF-α/ IL-10 ↓
GSH/GSSG ↑

N/A N/A N/A

OVX-HTN SOD ↑
Catalase ↑
TNF-α ↓
p-IKKα/ß ↓
p-NFkB ↓
COX-2 ↓

ERα & ERβ: no change
Collagen I ↓
TGF-ß ↓ 
p-Smad 2/3 ↓ 
CTGF ↓
t-PA ↓
MMP9 ↓

Table 1: Cardiac anti-inflammatory, anti-apoptotic, anti-fibrotic effects of exercise training.
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