
Abstract

This paper investigates the dynamic behavior of functionally graded beam in the thermal environment 
due to a moving harmonic load. The material properties are assumed to be graded in the thickness 
direction by a power-law function, and they are considered to be temperature dependent. Two types of 
temperature distribution, namely uniform and nonlinear temperature rises, are considered. Equations 
of motion based on Euler-Bernoulli beam theoryare derived from Hamilton’s principle and they are 
solved by a simple finite element formulation in combination with Newmark time-integration procedure. 
Numerical results show that the dynamic deflection and dynamic amplification factor is decreased with 
increasing the temperature rise, and the decreasein the uniform temperature rise is more significant 
that by the nonlinear temperature rise. The excitation frequency plays an important role in the dynamic 
behavior of the beams, and the frequency at which resonant phenomenon can occur depends on the 
temperature. A parametric study is carried out to highlight the effect of the temperature rise and moving 
load parameters on the dynamic behavior of the beams.

Dynamic Behavior of Functionally Graded Beams in Thermal 
Environment due to a Moving Harmonic Load

Publication History:
Received: July 04, 2016
Accepted: October 03, 2016
Published: October 05, 2016

Keywords:

Functionally graded beam, Thermal 
environment, Temperature 
dependent material property, 
Moving harmonic load, Dynamic 
analysis

Research Article Open Access

Introduction

Functionally graded materials (FGMs) were firstly developed by a 
Japanese scientist in mid-1980s as structural components for using in 
severe thermal conditions [1]. The smooth variation of the effective 
material properties enables these materials to overcome the drawbacks 
of the conventional composite materials. Many investigations on the 
behaviour of FGM structures in the thermal environment have been 
reportedin the literature, contributions that are most relevant to the 
present work are briefly discussed below.

Employing the Rayleigh-Ritz method, Kim [2] studied the free 
vibration of a third-order shear deformable FGM plate in the thermal 
environment. The author has shown that the frequency of the plate is 
remarkably decreased by the temperature rise. Pradhan and Murmu 
[3] used the modified differential quadrature method in solving 
the equations of motion for free vibration of elastically foundation 
supported FGM sandwich beams in a high-temperature environment. 
Based on the higher-order shear deformation theory, Mahi et al. [4] 
derived an analytical solution for free vibration of FGM beams with 
temperature-dependent material properties. The improved third-
order shear deformation theory was used by Wattanasakulpong 
et al. [5] to study the thermal buckling and free vibration of FGM 
beams. The authors concluded that the fundamental frequency of 
the beams approaches zero when the temperature raises towards the 
critical temperature. Ebrahimi et al. [6] employed the differential 
quadrature method to study the free vibration of FGM porous beams 
in the thermal environment. It has been shown by the authors that 
the fundamental frequency of the beams is significantly influenced by 
both the temperature and porosities.

The vibration of beams due to moving loads is often met in practice 
and isa subject of investigation for a long time. A large number of 
closed-form solutions for homogeneous beams subjected to different 
types of moving loads are presented in a well-known monograph 
by Frýba [7]. The dynamic analysis of FGM beams due to moving 
loads has been carried out by several researchers recently. Şimşek and 
Kocatürk [8] approximated the axial and transverse displacements 
by polynomials in their derivation of the equations of motion for an 
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FGM Euler-Bernoulli beam under a moving harmonic load. 
Lagrange multiplier method was then employed in combination 
with Newmark method to compute the vibration characteristics 
of the beams. The method in [8] has been extended by Şimşek in 
studying the dynamic behavior of FGM beams under a moving mass 
[9], and a nonlinear FGM Timoshenko beam subjected to a moving 
harmonic load [10]. Khalili et al. [11] used the mix Ritz-differential 
quadrature method to compute the dynamic response of FGM Euler-
Bernoulli beams carrying moving loads. The Runge-Kutta method 
was employed by Rajabi et al. [12] to investigate the dynamic behavior 
of an FGM Euler-Bernoulli beam under a moving oscillator. Nguyen 
et al. [13], Gan et al. [14] employed the finite element method to study 
the dynamic behavior of FGM beams traversed by moving forces.

To the authors' best knowledge, the dynamic behavior of FGM 
beams in the thermal environment due to a moving harmonic load 
has not been studied in the literature, and it will beconsidered in the 
present work. The material properties are considered to be dependent 
on the temperature, and they are graded in the thickness direction 
by a power-law distribution. The temperature is assumed to vary in 
the beam thickness only, and its distribution is obtained from the 
steady-state Fourier equation. Theequations of motion based onEuler-
Bernoulli beam theory are derived from Hamilton's principle and 
they are solved by a finite element formulation in combination with 
the Newmark time-integration method. The effect of the material 
distribution, temperature change, and moving load parameters on 
the on the dynamic behavior of the beams is examined in detail and 
highlighted.
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Functionally Graded Beam

A simply supported FGM beam with rectangular cross section 
under a load F=F0cos(Ωt), moving from right to left, as shown in 
Figure 1is considered. Denoting the length, cross-sectional height and 
width of the beam as L, h and b, respectively. The x-axis is chosen to 
be on the mid-plane, and the z-axis is perpendicular to the mid-plane. 
The investigation is carried out based on thefollowing assumptions: 
(i) the load F is always in contact with the beam, and its velocity (v) is 
constant; (ii) the beam is initially at rest, and the inertial effect of the 
load F is negligible.

The beam material is formed fromceramic and metal with volume 
fraction of ceramic (Vc) and metal (Vm) is assumed to be given by

where n (0≤n<∞) is the grading index. In (1) and hereafter, 
the subscript “c” and “m” are used to indicate ceramic and metal, 
respectively.

The beam material is considered to be dependent on the 
temperature, and a typical property (P) is a function of temperature 
(T) as [15]

where T=T0 + ∆T, with T0 = 300 K is reference temperature and 
∆T is the temperature rise, is the current environment temperature; 
P-1, P0, P1, P2 and P3 are coefficients of T and they are unique to the 
constituents. Table 1 lists the coefficients of Alumina (Al2O3) and Steel 
(SUS304), the constituents of the beam considered in this paper.

The effective material properties are evaluated by Voigt’s model read

From Eqs. (1) and (3), the effective Young’s modulus, thermal 
expansion and mass density are given by

where the mass density is considered to be independent of the 
temperature.

In the present work, the temperature is considered to vary in the 
thickness direction only, and itis assumed that the temperature being 
imposed to Tm at the bottom surface and Tc at the top surface. With 
this condition, the distribution of temperature in the thickness can be 
obtained as solution of the following Fourier equation (23)

where κ is the thermal conductivity, assumed to be independentof 
the temperature. The solution of Eq. (5) has the form (23)

If Tc= Tm, Eq. (6)gives a uniform temperature rise(UTR). Otherwise, 
it describes a nonlinear temperature rise (NLTR).

Governing equation

Based on the Euler-Bernoulli beam theory, the displacements u and 
w of an arbitrary point in the x and z directions, respectively are given 
by

where u0(x, t) and w0(x, t) are respectively the axial and transverse 
displacements of a point on the x-axis; t is the time, and (...), x denotes 
the derivative with respect to x. Based on linearly elastic behaviour, 
the normal strain (εx) and normal stress (σx) are as follows

The strain energy of the beam (UB) resulted from the mechanical 
loads reads
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Figure 1: A simply supported FGM beam under a moving load 
F=F0cos(Ωt).
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Material Property P0 P-1 P1 P2 P3

Al2O3 E (Pa) 349.55e+9 0 -3.853e-4 4.027e-7 -1.673e-10

ρ (kg/ m3) 3800 0 0 0 0

α (K-1) 6.8269e-6 0 1.838e-4 0 0

κ(Wm/K) -14.087 -1123.6 -6.227e-3 0 0

SUS304 E (Pa) 201.04e+9 0 3.079e-4 -6.534e-7 0

ρ(kg/ m3) 8166 0 0 0 0

α (K-1) 12.330e-6 0 8.085e-4 0 0

κ(Wm/K) 15.379 0 -1.264e-3 2.092e-6 -7.223e-10

Table 1. Temperature-dependent coefficients of Young’s modulus E, mass density ρ, coefficient of thermal expansion α and thermal conductivity κ 
for Al2O3 and SUS304 (32).
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where A11, A12 and A22 are respectively the extensional, extensional-
bending coupling and bending rigidities, defined as

With A is the cross-sectional area. With the effective Young’s 
modulus and temperature are given by Eqs. (4) and (6), the above 
rigidities can be evaluated.

The strain energy from initial stress due to the temperature rise (UT 
) is given by [4]

where NT is the axial force resultant caused by elevated temperature, 
defined as

with ∆T, as mentioned above, is the temperature rise. The kinetic 
energy of the beam (T) resulted from Eq. (7) is

 

where an overdot denotes the differentiation with respect to time, 
and I11, I12, I22 are the mass moments defined as

Finally, the potential of the moving forces (V) has a simple form as

with δ(.) is the delta Dirac function; x is the current position of load 
F with respect to the left end of the beam.

Applying Hamilton’s principle to Eqs. (9), (11), (13) and (15), we 
obtain the following equations of motion for the beam

The natural boundary conditions for the beam are as follows

where are respectively the prescribed axial, shear forces and 
moments at the beam ends.

The finite element method is employed herein for solving Eq. (16). 
To this end, the beam is assumed to be divided into some two-node 
elements with a length of l. The vector of nodal displacements (d) for 
a generic element has six components as

where u1, u2 are respectively the axial displacements at nodes 1 and 
2; w1, θ1, w2, θ2 are the transverse displacements and rotations at the 
two nodes. In Eq. (18) and hereafter the superscript ‘T’ is used to 
denote a transpose of a vector or a matrix. 

The axial displacement u and transverse displacement ware 
interpolated from the nodal values according to

u0 = Huu , w0 = Hww	

where Hu= {Hu10 0 Hu20 0 }, Hw= {0 Hw1Hw20 Hw3Hw4} are the matrices 
of shape functions. Here, the following linear and cubic Hermite 
polynomials are used as the shape functions for u and w

and

Using the above shape functions, one can write the strain energy UB 
in the form

where kT is the element stiffness matrix due to the mechanical load 
with the following form

The strain energy resulted from the temperature rise can be written 
as

where kT is the stiffness matrix stemming from the temperature rise 
with the following form

Similarly, the kinetic energy can be written as

with the element consistent mass matrix m has the form

The finite element equation for undamped dynamic analysis of the 
beam has the form

where D, M and K are the total nodal displacement vector, mass 
and stiffness matrices, respectively; Fex is the total nodal load vector 
with the following form

The above nodal load vector contains all zero coefficients, except 
for the element currently under loading. The notation  Hw|x in Eq. 
(29) means that the shape function matrix Hw are calculated at xe, 
which is the position of load F measured from the most left node 
of the element. The average acceleration method described in [16] 
is adopted herein to solve Eq. (28). By setting the right-hand side of
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Eq.(28) to zeros, the equation becomes a free vibration problem, 
which can be solved by the standard value solver.

Results and Discussion

A computer code based on the developed formulation and 
described numerical algorithm is developed and employed to study 
the dynamic behavior of the beam in this Section. To this end, anFGM 
beam formed fromAl2O3 and SUS304 with the materials data given 
in Table 1 under a moving harmonic load F=F0cos (Ωt) with F0=100 
kN is considered here with. An aspect ratio L/h=20 is assumed, and a 
uniform increment time step, Δt=ΣT/500, where ΣT=L/v is the total 
time for the load F to cross the beam, are employed for computation 
reported below.

Validation of derived formulation is firstly confirmed by 
comparing the numerical result of the present paper with the data 
available in the literature. In Table 2, the frequency parameters,                                                 
                                                     (with ω is the fundamental frequency and Es, 
ρs are Young’s modulus and mass density of steel), at various values of 
the UTR and NLTR of this paperare compared to the result obtained 
by the differential transform method in Ref. [6]. As observable from 
the table, the results of this paperare in good agreement with that of 
Ref [6]. To verify the formulation in evaluating the dynamic response 
of an FGM beam, the maximum dynamic amplification factor, 
max(DAF), and the corresponding velocity of a beam made of Al2O3 
and Aluminum (Al), previously investigated in Ref. [8] are computed 
and the result is given in Table 3. Noting that the beam with data given 
in Ref. [8] were used in the analysis, and the DAF is defined in the 
same way as that of an isotropic beam carrying a moving load, that is 

where is the maximum static deflection of the pure metal beam 
under a load F0. As seen from Table 3, the maximum DAF and the 
corresponding velocity of present work are in good agreement with 
that of Ref. [8]. It is worth to mention that the results in Table 2 and 
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Table 3 are converged by using twenty elements, and this number of 
elements will be utilized for the all the numerical examples.

The effect of material distribution on the dynamic behavior of FGM 
beam in the thermal environment can be seen from Figure 2, where the 
time histories for the normalized deflection are illustrated for various 
values of the grading index n and v=20 m/s, Ω=15 rad/s, ΔT=50K.
In the figure and hereafter, the traveling time and the mid-span 
deflection are normalized by the total time and the maximum static 
deflection, that is t*=t/ΣT and w*=w0(L/2,t)/w0st. As seen from Figure 
2, at the given values of the moving load velocity, excitation frequency 
and temperature rise, the maximum mid-span deflection increases 
with the increase of the index n, regardless of the temperature type. 
The curves for the time histories obtained in the UTR are similar 
to that obtained in the NLTR, except for the higher amplitude.The 
increase of the mid-span deflection by raising the grading index n 
can also be seen from Figure 3 where the relation between the DAF 
and the index nis depicted for different temperature rises. The DAF 
steadily increase with the increase in the index n, irrespective of the 
temperature distribution. The DAF of the beam subjected to NLTR is 
smaller than that of the beam under UTR, but the relations between 
DAF and n of the two temperature distributions are very similar.

The influence of the temperature rise on the dynamic behavior of the 
FGM beam is illustrated in Figsure 4–6. The maximum mid-span 
deflection of the beam, as seen from Figure 4 increases by both the 
UTR and NLTR. The situation for the DAF, as can be observable 
from Figure 5, is similar, and the DAF increases with increasing the 
temperature rise. The influence of the UTR is more significant than that 
of the NLTR, and the DAF increases more significantly by the UTR. 
The curves exhibit the relation between the DAF and the moving load 
velocity have similar forms as that of a homogeneous beam subjected 
to a moving force [17], and the DAF experiences a repeated increase 
and decrease period before reaching a peak value, regardless of the 
temperature rise. The increase of the DAF by the temperature rise can 
also be seen from Table 4, where the DAF is given for various values 

of the moving load velocity, the temperature rise and the grading 
index n. Irrespective of the moving load velocity and the index n, the 
DAF in the table clearly increases by the temperature rise. The axial 
stress at the mid-span section, as seen from Fig. 6, also increases by 
the temperature rise, and the increase of the stress by UTR is more 
significant than by the NLTR. The stress in Figire 6 was calculated at 
the time when the load arrives at the mid-span and it was normalized 
by F0/A.

   In Figure 7, the time histories for the normalized mid-span 
deflection are depicted for various values of the excitation frequency 
Ω and n=3, v=20 m/s, ΔT=50K. The effect of the excitation frequency 
on the dynamic behavior of the beam is clearly seen from the figure. 
The number of vibrations which the beam executesincrease with

n=0.1 n=0.2 n=0.5 n=1
∆T Ref. [6] Present work Ref. [6] Present work Ref. [6] Present work Ref. [6] Present work
20K UTR 4.6536 4.6053 4.3867 4.3514 3.8974 3.8767 3.5193 3.5046

LTR 4.7018 4.6598 4.4334 4.4089 3.9354 3.9384 3.5474 3.5678

40K UTR 4.4516 4.3944 4.1782 4.1350 3.6779 3.6510 3.2925 3.2726
LTR 4.6020 4.5603 4.3279 4.3093 3.8141 3.8380 3.4114 3.4659

80K UTR 4.0148 3.9377 3.7212 3.6610 3.1834 3.1441 2.7693 2.7399
LTR 4.3956 4.3546 4.1087 4.1031 3.5591 3.6292 3.1216 3.2531

Table 2: Comparison of frequency parameter  of FGM porous beam in thermal environment.

Present work Ref. [8]

n max(DAF) v (m/s) max(DAF) v (m/s)

0.2 1.0361 222 1.0344 222

0.5 1.1447 198 1.1444 198

1 1.2503 179 1.2503 179

2 1.3377 164 1.3376 164

Al203 0.9329 252 0.9328 252

SUS304 1.7326 132 1.7324 132

Table 3: Comparison of maximum amplification factor and corresponding 
velocity of FGM beam in room temperature. 

2

s s/ /L h Eω ω ρ=

[ ]0 0stDAF max ( / 2, ) /w L t w= (30)
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Figure 2: Time histories for normalized mid-span deflection for various values of index n(v=20 m/s, Ω=15 rad/s, ΔT=50K). 

Figure 3: Relation between DAF and grading index nwithdifferent temperature rises (v=30 m/s, Ω=0). 

Figure 4: Effect of temperature rise on time histories for normalized mid-span deflection for n=3, v=20 m/s, Ω=15 rad/s.
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   In Figure 7, the time histories for the normalized mid-span 
deflection are depicted for various values of the excitation frequency 
Ω and n=3, v=20 m/s, ΔT=50K.The effect of the excitation frequency 
on the dynamic behavior of the beam is clearly seen from the figure. 
The number of vibrations which the beam executesincrease with 
increasing the excitation frequency. The vibration amplitude is much 
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higher for the excitation frequency near the fundamental frequency, 
which equals to 34.4359 rad/s and 38.4791 rad/s for the UTR and NLTR 
of the figure, respectively. The influence of the excitation frequency 
on the dynamic behavior of the beam can be seen more clearly from 
Fig. 8, where the relation between DAF and the excitation frequency 
is illustrated for different temperature rises and n=3, v=20 m/s.

Figure 4: Effect of temperature rise on time histories for normalized mid-span deflection for n=3, v=20 m/s, Ω=15 rad/s.

Figure 5: Relation between DAF and moving load velocity v for various temperature rises and n=3, Ω=0.

Temperature v (m/s) ∆T(K) n=0.1 n=0.2 n=0.5 n=1 n=2 n=5

UTR 25 50 0.9173 0.9562 1.1114 1.2334 1.3043 1.4525

  100 1.2536 1.3929 1.6645 2.1392 2.6394 3.1685

50 50 1.0034 1.0633 1.1657 1.2114 1.3902 1.6104

100 1.3454 1.4349 1.7777 2.4255 3.1721 4.1644

NLTR 25 50 0.814 0.8442 0.9223 1.0174 1.083 1.1336

  100 0.9097 0.9404 1.0823 1.1994 1.2767 1.4233

50 50 0.8761 0.9222 1.0056 1.0551 1.0671 1.1749

100 0.9937 1.0473 1.1415 1.1883 1.3397 1.5744

Table 4: DAF for different values of moving load velocity, temperature rise and index n.

http://dx.doi.org/10.15344/2455-7412/2016/119
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Figure 6: Effect of temperature rise on thickness distribution of normalized axial stress for n=0.3, v=20 m/s, Ω=0.

Figure 7: Time histories for normalized mid-span deflection for various values of excitation frequency n=3, v=20 m/s, ΔT=50K.

Figure 8: Relation between DAF and excitation frequency for different temperature rises and n=3, v=20 m/s.

http://dx.doi.org/10.15344/2455-7412/2016/119


The DAF rapidly increases when the excitation frequency approaches 
the fundamental frequency, irrespective of the temperature rise. Since 
the damping effect is ignored in the present work, the resonance will 
occur, and the DAF becomes infinity when the excitation frequency 
equals to the fundamental frequency. The excitation frequency at 
which the resonance can occur, as seen from Figure 8, changes with 
the temperature of the environment, and this should be taken into 
consideration in designing FGM beams subjected to moving harmonic 
loads. The resonant frequencies corresponding to the curves in Fig. 
8 are 39.0262 rad/s, 34.4359 rad/s, 28.9872 rad/s for the UTR and 
40.4788 rad/s, 38.4791 rad/s and 36.3454 rad/s for the NLTR.

Conclusion

The dynamic behavior of FGM beams in the thermal environment 
due to a moving harmonic load was investigated. The material 
properties are assumed to be temperature-dependentand they are 
graded in the thickness direction by the power-law distribution. 
Equations of motion derived from Hamilton’s principle and they 
are solved by a finite element formulation in combination with the 
Newmark method. The validation of the derived formulation has been 
confirmed by comparing the obtained numerical result with the data 
available in the literature. A parametric study was carried out on a 
beam with simply supported ends to highlight the influence of the 
material distribution, the temperature rise, the moving load velocity 
and excitation frequency on the dynamic behavior of the beam. The 
main conclusions of the paper can be summarized as follows.

 
•	 The dynamic characteristics of FGM beams under a moving 

load, including the mid-span dynamic deflection, DAF and axial 
stress are significantly influenced by the temperature, and they 
are increasedby the increase of the temperature rise. Among the 
two types of temperature distribution considered in the present 
work, the UTR has a stronger effect on the dynamic response 
than the NLTR does.

•	 The excitation frequency plays an important role in the dynamic 
behavior of the FGM beams due to moving harmonic load, 
and the resonance can occur when the excitation frequency 
and the fundamental frequency are identical. The resonant 
frequency, however changes with the change of the environment 
temperature, and this should be taken into account in designing 
the FGM beams in a thermal environment subjected to moving 
harmonic loads.
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