
Abstract

Dynamics modeling and control for quadrotor aerial robots are considered in this paper. The three- 
dimensional dynamics model of the quadrotor is first derived using the Newton-Euler approach. When 
the propelling rotor rotating with respect to the moving robot, the rotating blades could be deflected 
with an effect on the aerial vehicles known as flapping. The modeling with blade flapping is considered. 
Then a nonlinear stable adaptive control with flapping parameters estimation is proposed using the 
backstepping technique for the position and yaw angle trajectory tracking. Finally, computer simulation 
is used to validate the performance of the proposed control strategy. In the simulation study, the desired 
trajectory is constructed using the cubic spline interpolation.
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Introduction

Quadrotor aerial vehicles are highly maneuverable and have enabled 
a number of indoor and outdoor applications, e.g., three-dimensional 
(3D) environment exploring, mapping, navigation, transporting, 
military and commercial opportunities. The ability of 3D movement 
brings great research interest in the field of mobile robotics.

Corke [1] provides a comprehensive introduction to the 3D 
dynamics model of quadrotor robots using Newton’s second law and 
Euler equations. And a PID-based inner-loop/outer-loop scheme is 
proposed for the 3D translation and yaw control. Mahony et al. [2] 
propose a tutorial introduction to the rigid-body dynamics modeling, 
estimation, and control for multirotor aerial vehicles including the 
quadrotor case. They also give a physical discussion about the rotor 
blade flapping referring to [3,4], and then presented a disturbed 
external force model due to the blade flapping effect. Beard [5] 
considers the problems of dynamics, state estimation, and control of a 
quadrotor aerial vehicle.

Benzaid et al. [6] first present the dynamics model of a quadrotor 
robot and then propose an inner-loop/ outer-loop based control 
scheme. The outer-loop comprises of a nonlinear thrust control law 
using the backstepping approach for the 3D position tracking control. 
In the derivation of control law using the backstepping technique, they 
introduce virtual inputs for the x-y model to derive the desired roll and 
pitch angles for using as the commands of the inner-loop PID control. 
The desired yaw-angle trajectory is directly provided exogenously, 
and PID is used for the yaw control. The proposed approach adopts 
some intuitive concept for providing the roll and pitch commands, so 
the stability of the overall system is not guaranteed seriously.

In Yesildirek et al. [7], the quadrotor system is decomposed into 
three fully actuated subsystems in pitch, roll and yaw domains. They 
propose a multi Lyapunov function based switching control algorithm 
to achieve tracking of Cartesian space motion and the heading angle 
of the quadrotor. Hao et al. [8] propose a change in describing the 
dynamics of the quadrotor and separate the dynamics into three 
sub-groups. Then combined with a coordinate transformation, they 
propose a trajectory tracking control design using the backstepping 
technique. Zhao et al. [9] present an asymptotic tracking controller 
for the quadrotor using the robust integral of the signum of the 
error (RISE) method and an immersion and invariance (I&I)-based 
adaptive control methodology. The proposed control system is 
composed of two parts: the inner loop for attitude control (using the 
RISE approach) and the outer loop for position control (using the I&I 
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adaptive control methodology. The proposed control system is 
composed of two parts: the inner loop for attitude control (using the 
RISE approach) and the outer loop for position control (using the I&I 
approach).

This paper will consider the 3D dynamics modeling of the 
quadrotor with blade flapping effect via the Newton-Euler approach 
and the position and yaw angle trajectory tracking control design 
using the backstepping technique. Computer simulation is conducted 
to illustrate the trajectory tracking performance of the 3D translation 
and yaw motion.

Dynamics Model of a Quadrotor Robot

Refer to Figure 1, the quadrotor robot comprised of a main frame 
structure and four blade rotors (numbered 1, 2, 3, and 4 clockwise) is 
considered as a rigid body, where the body coordinate system {B} is 
defined with its origin G attached to the center of mass of the whole 
robot, and the inertia (world) coordinate frame {W} with origin 
at O is fixed on the earth surface. The positive direction of   axis is 
defined along the heading direction of the vehicle. Rotors 1 and 3 
rotate clockwise, and rotors 2 and 4 rotate counterclockwise. In the 
dynamics modeling, we consider the gravity force along the negative   
Zw direction, and the four thrust forces Ti  = Cfωi , i = 1,2,3,4 along  ZB 
axis, where Cf is the aerodynamic thrust coefficient and ωi  is the rotor 
(blade) rotating speed. The resisting torque about the blade axis is τi= 
Cqωi , i = 1,2,3,4 , where Cq is the aerodynamic drag coefficient. Thus, 
the total thrust force and the roll, pitch and yaw torques  τr, τp, and τy   
are as follows [12].
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where  l is the distance from the center of mass G to each rotating 
axis.

ZYX Euler angles (ψ, θ, ϕ) are used for representing the orientation 
of the quadrotor vehicle’s body frame with respect to the world frame 
wRB. The first rotation is the yaw angle ψ about ZE axis, then the second 
rotation is the pitch angle θ  about  YE axis, and the third rotation is the 
roll angle ϕ  about XE axis. Thus  wRB can be represented as [13]

where,                   ,                   etc.

Define t = [x,yz]T as the position vector of the center of mass G of 
the quadrotor robot in terms of the world frame, and assume that the 
robot structure is symmetrical about the coordinate system. Consider 
the quadrotor robot being under normal flight conditions, i.e., the roll 
and pitch angles are very small, and the flight drag force is negligible. 
By the Newton’s second law and Euler equations of motion, we can 
derive the dynamics model of the quadrotor robot as follows: [1,14]

where m is the mass of the quadrotor robot, g  is the gravitation 
acceleration constant, I = diag[Ixx, Iyy, Izz]  is the mass inertia matrix 
about the body frame {B}, Ixx , Iyy , and Izz  are the moments of inertia 
about ZB axes, respectively.

Mahony et al. [2] considered the blade flapping effect and proposed 
a simplified flapping model. Neglecting the effect of the vertical 
velocity component, we consider the quadrotor robot being with a 
flight velocity vector νB = [u, ν, 0]τ. In order to simplify the flapping 
model, the four rotors are assumed with same conditions. The 
aerodynamic disturbance forces resulting from the deflection of the 
rotor blades in the XBYB  plane can be derived as follows. As shown in 
Figure 2, define the flapping angles β  and β  as [2]β ⊥

                            ;                                                                                     (3)

 where  β is the tilt angle of the rotor away from the incoming 
apparent wind, and β  is the tilt orthogonal to the incident wind; 
A1c and A1s are positive constants;                          is the advance 
ratio (ratio of the robot translational speed to the blade’s tip tangential 
speed relative to the robot). Consider the case of small advance ratio μ, 
thus  μ2 ≈ 0, and  the flapping angles are small and become as follows:

                                                                                                                  (4)

then the total force acting on the quadrotor robot can be represented 
as:

                                                                                                                   (5)

Substituting Aflap and Equation (4) into Equation (5), the 
translational equations of motion of the quadrotor robot can be 
derived as follows using the Newton’s second law:

                                                                                                                 

                                                                                                                                                                                

where α = atan2(ν,u)  is the angle between the velocity vector  υs and 
XB  axis. And the rotational equations of the robot are still expressed 
by Equations (2b).

Adaptive Control via Backstepping for Quadrotors with Blade 
Flapping

Since a quadrotor aerial vehicle has only four rotor actuators, it is 
an underactuated system and difficult to control it to have arbitrary 
six degrees-of-freedom motion in the free Cartesian space. Due to the 
limit of only four rotors, it is natural to choose the four important 
motions including the three translational components and the 
heading rotation (i.e., the yaw angle) as the control objectives. That 
is, we can set four arbitrary desired trajectories: xd(t),  yd(t), yd(t) and  
ψd(t), and propose a suitable stable control law to obtain the trajectory 
tracking control objective.
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Figure 1: Forces and torques acting on a quadrotor robot.
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Figure 2: Blade flapping angle.
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In this paper, we will propose a nonlinear stable adaptive control 
design using the backstepping approach [6,15] for quadrotor 
robots considering the blade flapping effect. Based on the dynamics 
model: Equations (6) and (2b), and after substituting (1) into the 
model, we can first define the following four control input variables:

                                                                                                                   (7)

and choose the state vector

After defining the regression vectors as:

    
                                                                                                                     (8)

and the unknown flapping angles vector as:

                                                                                                                     (9)
Equations (6) can be expressed as the regression model:

                                                                                                                 (10a)

where 

And                   and                    are                   the flapping disturbance 
terms along the axes, respectively. Equations (2b) can be expressed as

                                                                                                                (10b)

In the derivation of stable adaptive control law, the estimate of  
the unknown flapping angles is defined as                          , and the 
estimation error is defined as                      . The estimates of the flapping 
disturbances are defined as:                   ,                     ,                      .

Z-axis motion control design

First, consider the            subsystem. Introducing the virtual input     
       , we have:

Define the tracking error

where  Zd(t) is the desired trajectory for  .Taking the time derivative, 
we have:

Choosing Lyapunov function candidate as:

                                                                ,                                                    (11)

we can obtain the time derivative as follows:

By choosing the virtual input  β1 as:

                                                            ,                                                      (12)
we have
                                                                                                                  (13)

Consider the subsystem:

                                                                                                                  (14)

And define

we can obtain:

Choosing Lyapunov function candidate:

and taking the time derivative, we have:

                                                                                                                       (15)

Hence, we can choose the control law:

                                                             ,                                                     (16)

and obtain:

x-axis subsystem control design

Similarly as the z-axis design procedure, the x-axis subsystem can be 
considered by introducing the virtual inputs                      
respectively, and defining the errors:

                                                                                                                   (17)

where xd(t)  is the desired trajectory for x. Choose Lyapunov function 
candidates:

                                                                                                                      (18)

After taking their time derivatives and choosing β2 and βux as:

                                                                           ,                                         (19)
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we can obtain:

                                                                                                                   (20)

y-axis subsystem control design

Similarly, the y-axis subsystem can be considered by introducing 
the virtual inputs β3, βuy for x8  and uy respectively, and defining the 
errors:

                                                                                                                   (21)

where Yd(t) is the desired trajectory for y. Choose Lyapunov 
function candidates:

                                                                                                               (22)

After taking their time derivatives and choosing β3 and βuy  as:

                                                                         ,                                     (23)   

we can obtain:
                                                                                                                 (24)

Flapping Angles Estimator Design

	 Choose Lyapunov function candidate:

                                                                                                                    (25)

where Γ  is a 2×2 positive-definite weight matrix. Taking the time 
derivative and substituting into U1 , βux, and          and using the 
assumption of  , i.e., ,                  we can obtain:

                                                                                                                 (26)

Thus, we can choose the unknown flapping angles estimator as:

                                                                                                                 (27)

and obtain

                                                                                                                 (28)

Since   is negative definite, the adaptive translation subsystem is 
asymptotically stable [16].

Pitch Subsystem Control Design

Consider the pitch subsystem and introduce virtual input  β for  x11.
Define the error

                                                                                                           (29)
and choose Lyapunov function candidate:

                                                                                                                          (30)
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In order to make the time derivative   negative definite, we can 
select  βe as:

                                                                                                                   (31)

where 

Define the error                         and choose Lyapunov function 
candidate as:

                                
                                                                                                                   (32)

In order to make the time derivative   negative definite, we can 
select the control law  U3  as follows:

                                                                       ,                                         (33)

Roll Subsystem Control Design

Consider the roll subsystem and introduce virtual input input βϕ  
for x10 . Define the error

                                                                                                               (34)
and choose Lyapunov function candidate: 
                                                                                                              (35)

To make      negative definite, we can select βϕ  as:

                                                          ,                                                      (36)

Define the error                and choose Lyapunov function  
candidate as:

                                                                                                                     (37)
In order to make the time derivative    negative definite, we can 

select the control law   U2 as follows:

 

                                                                                                                (38)

Yaw Subsystem Control Design

Finally, consider the control of the yaw subsystem:

                                                                                                                  (39)

First, introduce the virtual input β4 for x12, and consider:
                                                                                                              (40)
Define the yaw tracking error:
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                                                                                                                  (42)

After taking the time derivative        and selecting
   
                                                                                                                     (43)
we can obtain:

                                                                                                                      (44)
Then define the error

                                                                                                                         (45)
and choose Lyapunov function candidate:
    
                                                                                                                    (46)

After taking the time derivative        and selecting the control law  U4 
as follows:

                                                                                                                    (47)

                                                                          , 
we can obtain:
                                                                                                                     (48)

Thus, the closed-loop yaw subsystem is asymptotically stable.
 
The proposed overall control system for a quadrotor robot can be 

summarized as shown in Figure 3.

Computer Simulation and Discussion

The tracking performance of the proposed adaptive control system 
with flapping compensation is tested via computer simulation 
using Matlab/Simulink as shown in Figure 3. Consider the desired 
trajectory created using the cubic spline method as shown in Figure 
4. The quadrotor is requested to flight straightly up to a height of 4 
m from the origin of the world coordinate system in 10 seconds, and 
then move counterclockwise in a circle with radius 5 m keeping the
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same height in 50 seconds. Then the quadrotor is required to maintain 
a steady hover in the final 10 seconds. The yaw angle is kept constant 
at   in the whole flight.

In the simulation study, the parameters of the quadrotor robot are 
selected as follows m=0.8 kg, r=0.1 m, g=9.81 m/s2 , l =0.5 m, A1c =  
A15= 1.5, 

The parameters of the controller used are as follows:

                                    and

The three-dimensional tracking result of the whole trajectory is 
shown in Figure 4. The trajectory tracking in the , , and  axes and 
the yaw angle tracking are shown in Figure 4.1. The tracking errors 
are shown in Figure 4.2. The induced roll and pitch angles during 
the flight are shown in Figure 4.3. Equation (7) describes the relation 
between the control variables    and the squared rotor speeds. Using 
the inverse transform we can find the required squared rotor speeds  
corresponding to the control signals  In order to get all positive the 
parameters of the controller must be suitably chosen. In this work, 
the response in the y-axis is thus lagged the desired trajectory 
approximately from  s and has larger tracking error and the largest 
tracking error is approximately 0.23 m. From Figure 4.3, we know that  

the roll and pitch angles are small and reasonable, thus the flight is 
stable.  The largest tracking errors in the  and z axes are approximately 
0.05 m and 0.02 m, respectively. The yaw angle can be kept at as shown 
in Figures 4.1 and 4.2. Figure 4.3 shows that in order to keep steady 
hovering, the required roll and pitch angles are larger during the 
hovering period. The estimates of the flapping angles are shown in 
Figure 4.4, and the estimate errors are larger in the hovering period. 
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Figure 3: Matlab/Simulink control block diagram.

3 3 3 2diag kg - m1.5 10  1.5 10  1.5 10  ,I − − −
=  × × × 

6 21.2459 10 N / rpm ,fC −= × 11 23.29 10 Nm / rpm .qC −= ×
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Conclusion

This article considers the dynamics modeling and nonlinear stable 
adaptive control design with blade flapping compensation for the 
quadrotor robots. The quadrotor robot is under-actuated since it has 
only four rotor actuators for three-dimensional flight maneuvering. 
It is rather difficult to construct an arbitrary six- dimensional flight 
control, so the usual approach to the control design adopts only the 
three-dimensional translation and yaw angle tracking control. The 
dynamic x-axis motion of a quadrotor could be induced by suitable 
small pitch rotation, and the y-axis motion could be affected by the 
roll motion. Based on these characteristics, this paper proposes a 
backstepping-based stable adaptive control design considering the 
blade flapping effect.  Computer simulation is conducted to illustrate 
the trajectory tracking performance of the 3D position and heading 
control. The roll and pitch angles generated by the controller are small 
enough, so the flight is stable and reasonable. In the simulation, the 
choice of the controller parameters is compromised for getting positive 
squared rotor speeds to compute practical rotor speed commands.

Figure 4: Desired and response trajectories.

Figure 4.1: Tracking results of the position and yaw.

Figure 4.2: Tracking errors of the position and yaw.

Figure 4.3: Roll and pitch angle responses.

Figure 4.4: Actual and estimated flapping angles.
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